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44    
Genetic Inspired Optimisation 

 

 

 

4.1 What are Genetic Algorithms? 

Genetic algorithms (GAs) are directed random search techniques used to look for pa-

rameters that provide a good solution to a problem. Essentially they are nothing more 

than educated guessing. The ‘education’ comes from knowing the suitabili ty of previous 

candidate solutions and the ‘guessing’ comes from combining the fitter attempts in order 

to evolve an improved solution. 

For example, the back propagation algorithm is a gradient based method for finding a 

weight set for a MLP that best maps the inputs onto the output, a search that can also be 

performed by GAs [7]. The optimisation problem of interest in this work is finding a 

schedule for electrically charging storage devices (hot water tanks and storage radiators) 

over a 24 hour period, given that electricity prices vary half-hourly. A solution is sought 

Taken from 
Philip David Brierley – ‘Some practical app lications of neural networks in the 
electricity indu stry’ 
EngD Thesis – 1998 – Cranfield University - UK 
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that minimises electricity costs whilst satisfying the hot water or thermal comfort re-

quirements. 

 

4.2 How do GAs Work? 

The inspiration for GAs came from nature and survival of the fittest. In a population, 

each individual has a set of characteristics that determine how well suited it is to the 

environment. Survival of the fittest implies that the ‘f itter’ individuals are more likely to 

survive and have a greater chance of passing their ‘good’ f eatures to the next generation. 

In sexual reproduction, if the best features of each parent are inherited by their offspring, 

a new individual will be created that should have an improved probabil ity of survival. 

This is the process of evolution. 

In nature the ‘blueprint’ of individuals is contained within their DNA. The DNA can be 

thought of as a string of genes, with each gene or combination of genes representing a 

particular feature. Reproduction is the ‘crossover’ of two DNA strings to produce a new 

blueprint that has genes from both parents. Mutation can also occur where a particular 

gene is not an exact copy of either parent. 

In genetic algorithm terms, a candidate solution is often referred to as a chromosome or 

string, which is a sequence of encoded numbers. This is commonly referred to as a bit 

string if the numbers are binary encoded. 

The process involved in GA optimisation problems is based on that of natural evolution 

and broadly works as follows, 

 

1. Randomly generate an initial population of potential solutions. 

2. Evaluate the suitabili ty or ‘f itness’ of each solution. 

3. Select two solutions biased in favour of f itness. 

4. Crossover the solutions at a random point on the string to produce two new solutions. 
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5. Mutate the new solutions based on a mutation probabil ity. 

6. Goto 2. 

 

4.3 The GA Operators 

Selection, crossover and mutation are the basic operators involved in GAs. How these 

and other factors can affect the operation of GAs wil l be demonstrated by means of 

several examples and experimental observations. 

Consider the popular board game ‘Mastermind’ where a player has to determine a hid-

den sequence of colours starting from an initial random guess. This initial guess is 

scored with a black marker for each colour in the correct position and a white marker for 

a correct colour but in the wrong position. Further guesses are made and scored until the 

correct sequence is determined or a given number of attempts have been made. In this 

game the correct solution evolves from the more suitable of all previous attempts, with 

clues from unsuitable candidate solutions also being part of the deduction process. This 

is a type of ‘ blind’ optimisation problem where no information is available on what 

makes a good solution, only information on how good solutions are. 

Given a few initial guesses the player will select high scoring attempts and perform 

crossover to see if this results in an improvement. New colours will almost certainly 

have to be mutated into the ‘educated guesses’ in the attempt to find the correct se-

quence. 

Fig 4-1 demonstrates how these three operators work considering a scoring scheme 

where a point is scored only for a number in the correct position. 

The GA search procedure is very easy to understand and implement, with nature provid-

ing ready examples of exactly how things could be done. 
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required solution

1      2      4      3

attempt     score
     1 1 4      2      1      1

     2 2 1      4      4      1 >selection

     3 2 1      2      3      2 >selection

     4 3 1      2      4      1 crossover

     5 4 1      2      4      3 mutation

 

Fig 4-1   An example of how the required solution evolves using the selection, crossover and mutation 
operators 

 

4.4 Implementation 

4.4.1 Encoding 

In optimisation problems a set of parameters is sought that will give the best solution to 

a particular problem. In order to implement a GA these parameters must be encoded into 

a string so that crossover and mutation can be applied. Binary encodings are the most 

common, due to the fact that Holland used them in his early pioneering work [66]. In 

DNA base 4 encoding is used, as the building blocks of DNA can take on 4 values, 

translated as A, C, G, or T. 

Any base can be used, as it is just a different method of encoding the same information, 

but the lower the base the longer the string will be. For example, if a number is sought 

between 0 and 255 then this can be encoded as a binary string of length 8, a base 4 string 

of length 4, a base 16 string of length 2 or a base 256 string of length 1, as shown in 

Table 4-1. 
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It is clear that the importance of the operators will change depending on the base used. 

In base 2, the two given strings contain all the information required to derive any num-

ber between 0-255 by crossover alone. In base 16, two strings can at most lead to only 4 

different numbers by crossover alone, mutation being required to introduce new infor-

mation. In base 256 crossover cannot occur, mutation being the only operator that can 

introduce new numbers and finding a specific number becomes a pure random search. 

In choosing an encoding scheme the nature of the problem will play a major role. If 

many real valued numbers are required in a solution then binary encoding becomes 

impractical as the string length increases. In [67] a method of selective genome growth 

is proposed that helps solve the problem of choosing how to represent a genetic algo-

rithm. 

 

4.4.2 Population Size 

The population size is the number of candidate solutions in any one generation. In natu-

ral evolution the total population size is governed by what is sustainable by the 

environment and similarly in GAs the larger the population size the more computation-

ally intensive (in terms of memory requirement) is the search. 

In nature, the bigger the gene pool the more diverse is the genetic make up of the popu-

lation with many individuals each with their own set of characteristics that enable them 

to survive. One advantage of this diversity is that there will be no dominant gene that, 

for instance, may be susceptible to a particular disease and result in the elimination of 

the whole species. In the bird family, sub-species have evolved with dominant character-

Table 4-1   Representations of the base 10 numbers 0 and 255 in different bases 

base 2 
length=8 

base 4 
length=4 

base 10 
length=3 

base 16 
length=2 

base 256 
length=1 

00000000 0000 000 00 0 
11111111 3333 255 FF or |15|15| |255| 
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istics that allow them to survive their local conditions and in effect are sub-optimal 

solutions in the search for a global ‘super-bird’ . With large populations it can be seen 

how the search for the global optimal solution can be a slow (if not never-ending) proc-

ess. 

If the population size is small (e.g. a pride of lions), then a strong individual quickly 

becomes dominant and the diversity of the gene pool is restricted. The result is that good 

individuals (local optima) are quickly created but the dominance of particular genes 

restricts the search space. The chance of evolving the ultimate ‘super-lion(ess)’ (global 

optimum) is severely limited and would depend on mutation introducing new genes to 

diversify the search. 

As new solutions are generated it is common to keep the population size constant by 

eliminating individuals (or letting them die), although this does not have to be the case. 

Ideas for the selection procedure for elimination are plentiful in nature. For example, 

each generation could be completely replaced by its offspring, or as a new offspring is 

created it could be accepted or rejected depending on its fitness. The advantage com-

puters have over nature is that good individuals do not have to die and can be retained 

for indefinite reproduction. The retention of certain fit individuals is known as ‘elitism’ . 

 

4.4.3 Selection 

This is the procedure for choosing individuals (parents) on which to perform crossover 

in order to create new solutions. The idea is that the ‘f itter’ individuals are more promi-

nent in the selection process, with the hope that the offspring they create will be even 

fitter stil l. 

Two commonly used procedures are ‘roulette wheel’ and ‘ tournament’ selection. In 

roulette wheel, each individual is assigned a slice of a wheel, the size of the slice being 

proportional to the fitness of the individual. The wheel is then spun and the individual 

opposite the marker becomes one of the parents. In tournament selection several indi-

viduals are chosen at random and the fittest becomes one of the parents. 
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4.4.4 Crossover 

Along with mutation, crossover is the operator that creates new candidate solutions. A 

position is randomly chosen on the string and the two parents are ‘crossed over’ at this 

point to create two new solutions. Multiple point crossover is where this occurs at sev-

eral points along the string. A crossover probabil ity (Pc) is often given which enables a 

chance that the parents descend into the next generation unchanged. 

 

4.4.5 Mutation 

After crossover, each bit of the string has the potential to mutate, based on a mutation 

probabili ty (Pm). In binary encoding mutation involves the flipping of a bit from 0 to 1 

or vice versa. 

 

4.5 Experiments with GAs 

4.5.1 Chinese Hat Optimisation Problem 

To empirically evaluate the importance of the various parameters and techniques in 

GAs, several optimisation tests were performed. The code used is based on that in Ap-

pendix D. The experiments used tournament selection and a constant population size 

with the offspring replacing the parents every generation. 

The fitness evaluation function (fitness landscape, scoring template) of candidate solu-

tions for the first optimisation problem examined is shown in Table 4-2. For reference 

purposes this problem has been named the Chinese Hat because the scoring template 

diverges linearly outwards from the centre. There are two possible solutions for maxi-

mum fitness, one of which is shown by candidate solution 2, the other is the inverse of 

this where all the bits flip. The total number of candidate solutions is 2(string length). 
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In the experiments, tests for each particular parameter setting were repeated to conver-

gence 200 times to determine the average number of generations required to find the 

solution. Each subsequent trial differed by randomly generating a new initial population. 

After each crossover, mutation was only allowed on one randomly selected bit and 

whether it occurred depended on Pm. 

 

4.5.2 Results 

The results of varying the GA parameters for the Chinese Hat optimisation problem are 

shown in Fig 4-2 to Fig 4-8. All comments and discussion related to each figure are 

included below that figure. 

Table 4-2   An example of how the fitness of the solutions to the Chinese Hat problem are evaluated for a 
string length of 8. Each bit value in a solution is multiplied by the value in the same position in the 
scoring template and the total fitness is the square of the sum of all the bit scores. Each bit can have a 
value of 1 or –1 

 
Scoring Template 4 3 2 1 -1 -2 -3 -4 

 
Candidate Solution 1 1 1 -1 1 -1 -1 1 -1 

Bit by bit Score 1 4 3 -2 1 1 2 -3 4 

Total Score 1 = 102 = 100 
 

Candidate Solution 2 -1 -1 -1 -1 1 1 1 1 

Bit by bit Score 2 -4 -3 -2 -1 -1 -2 -3 -4 

Total Score 2 = (-20)2  = 400 
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Fig 4-2   The effects of Pm and the selection procedure 

By increasing the number of candidates (competitors) in the tournament for parenthood 
the number of generations required to convergence reduces. This would indicate that 
little diversity in the gene pool is required for this particular problem. There is also an 
optimum Pm around 0.5. With a higher mutation probabil ity the number of generations 
starts to increase, although this becomes less significant as the selection procedure is 
made more competitive. In Fig 4-2, Pc =1. 
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Fig 4-3   Elitism 

The introduction of an elitist strategy, where the best individual is always retained, 
shows significant improvements in performance but only for the higher mutation rates, 
indicating the solution is evolved from mutation of this ‘best’ individual. 
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Fig 4-4   Population size 

As would be expected, the larger the population size the fewer generations are required 
as the search space is increased. The highest rates of gain are seen by increasing the 
population size to 20, but even after this consistent reduction still occurs, as shown in 
Fig 4-5. 
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Fig 4-5   Population size 

A close up of Fig 4-4 shows consistent improvement in performance with increasing 
population size. 
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Fig 4-6   Function evaluations 

In serial computing it is not the number of generations that is important but the number 
of function evaluations. That is, how many solutions must be evaluated before the opti-
mum is reached, or roughly the number of generations multiplied by the population size. 
This gives an indication of the computing power (or time) required to solve the problem, 
assuming that evaluating the cost of each solution is a significant portion of the whole 
process. Fig 4-6 is the same data as that of the elitist tests in Fig 4-4, but with the num-
ber of evaluations also shown. It can be seen that for the given parameters, a population 
size of 6 is the most economical. After this the number of evaluations increases linearly 
with population size. 
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Fig 4-7   The effect of crossover and mutation probabilities for a population size of 6 

Thus far crossover has occurred in every reproduction. By introducing a crossover prob-
ability, the relative importance of crossover and mutation can be examined. This is 
shown for the most efficient population size of 6 and crossover probabilities of 0, 0.5 
and 1. What is seen is that the optimisation procedure for this small population relies 
solely on mutation with the crossover probability having a negligible effect. 
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Fig 4-8   The effect of crossover and mutation probabilities for a population size of 30 

With a larger population size increasing the crossover probability does improve the 
performance. Fig 4-8 is generated by the same procedure as Fig 4-7 but with a popula-
tion size of 30. It can be seen with this larger population size there is an optimal Pm but 
improvements are also made by increasing Pc. What Fig 4-7 and Fig 4-8 show is not 
unexpected and is reflected in nature in that small populations rely on mutation for 
diversity whereas in larger populations it is a combination of crossover and mutation. 
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The experiments on this simple optimisation problem have illustrated that selecting the 

correct parameters is very important in genetic algorithms. What is also very evident is 

that there are definite relationships between all the parameters showing that fine-tuning 

is required to increase the speed to success, or reduce the chance of failure. The tech-

nique always managed to solve the problem, but how does it compare with other hill-

climbing methods? 

 

4.5.3 Other Iterated Hill-Climbing Methods 

Other optimisation methods exist of which three were used for comparison with the GA. 

The following descriptions of these techniques are reproduced from [68]. 

 

4.5.3.1   Steepest-Ascent Hill Climbing (SAHC) 

1. Choose a string at random. Call this string current-hilltop. 

2. Going from left to right, systematically flip each bit in the string, recording the 

fitness of the resulting strings. 

3. If any of the resulting strings give a fitness increase, then set current-hilltop to 

the resulting string giving the highest fitness increase (ties are decided at ran-

dom). 

4. If there is no fitness increase, then save current-hilltop and goto step 1. Other-

wise goto step 2 with the new current-hilltop.  

5. When a set number of function evaluations have been performed (here, each bit 

flip in step 2 is followed by a function evaluation), return the highest hilltop that 

was found. 

4.5.3.2   Next-Ascent Hill Climbing (NAHC) 

1. Choose a string at random. Call this string current-hilltop. 
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2. For i from 1 to l (where l is the length of the string), flip bit i; if this results in a 

fitness increase, keep the new string, otherwise flip bit i back. As soon as a fit-

ness increase is found, set current-hilltop to that increased fitness string without 

evaluating any more bit flips of the original string. Go to step 2 with the new 

current-hilltop, but continue mutating the new string starting immediately after 

the bit position at which the previous fitness increase was found. 

3. If no increase in fitness were found, save the current-hilltop and goto step 1. 

4. When a set number of function evaluations has been performed, return the high-

est hilltop that was found. 

 

4.5.3.3   Random-Mutation Hill Climbing (RMHC) 

1. Choose a string at random. Call this string current-hilltop. 

2. Choose a bit at random to flip. If the flip leads to an equal or higher fitness, then 

set current-hilltop to the resulting string. 

3. Goto step 2 until an optimum string has been found or until a maximum number 

of evaluations has been performed. 

4. Return the current value of current-hilltop. 

 

1000 trials of each of these three algorithms were performed on the Chinese Hat prob-

lem for a string length of 50. The average number of evaluations, given in Table 4-3, 

shows that a GA is not the best method of solving this particular problem. In fact NAHC 

always reaches a global solution by traversing the string just once because the Chinese 

Hat is a smooth function when traversed from left to right. 
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The best GA based performance had a population size of 6 with a randomly selected 

gene being mutated with a probability of 0.5. With these parameters it was shown that 

crossover had a very limited effect (Fig 4-7, on page 84). As mutation appears to be the 

dominant process a variation of RMHC we called multiple random mutation hill climb-

ing (MRMHC) was tried on the Chinese Hat function. This is basically RMHC but with 

each gene having a mutation probability as opposed to one randomly selected gene 

being mutated. Another way of describing MRMHC is a GA with a population size of 1 

and the mutated offspring only surviving if it is as good as or better than the parent. 

Fig 4-9 (on page 88) shows the average performance of MRMHC over 1000 tests with 

varying mutation probabilities and string lengths. The circled points represent the opti-

mum mutation probabilities for the various string lengths with a pattern emerging that a 

Pm of (1/string length) appears to be the optimum. On average this is equivalent to 1 bit 

change per mutation which is an unsurprising result. Any less than this and some 

evaluations will be wasted as there will be no change, any more and there will be prob-

lems in fitting the last bit into position as there is a higher probability that more than one 

bit will be changed at once. The best performance with MRMHC for a string length of 

50 was 430 evaluations, which occurred with Pm at just over 1/50 or 0.02. 

The optimum mutation rate for MRMHC is on average 1 bit change per string, which is 

almost similar to RMHC, in which only one bit change per string is permitted. Similar 

results would be expected but it is noted that MRMHC requires over twice as many 

evaluations as RMHC. Why should this be so? 

Table 4-3   The average number of function evaluations over 1000 trials for the Chinese Hat problem 
with a string length of 50 

SAHC NAHC RMHC best GA MRMHC 

1082 48.6 190 650 430 
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If there is only one bit flip that is required to reach the optimum then RMHC should find 

this in an average number of evaluations equivalent to the string length. In MRMHC it 

is possible that in three consecutive evaluations the number of bit flips is 0,1 and 2, 

giving an average of 1. An evaluation with 0 flips is wasted and because only one bit 

requires correction, two bit flips wil l never find the optimum. It can thus be hypothe-

sised why MRMHC gives a worse performance than RMHC for this particular problem. 

 

4.5.4 Royal Road Functions 

So what kind of problems will GAs be superior at solving than other search techniques? 

The Schema Theorem and Building Block Hypothesis [66, 69] play on the idea that 

solutions are made up of short blocks of f it schema that use crossover to build up these 

schema into desirable solutions. A set of functions known as the ‘Royal Roads’ [68, 70, 

71, 72] were developed that provide a fitness landscape designed specifically to be 

easily solvable by GAs if they did work in this building block manner. As described by 

the developers (Mitchell et al.), ‘given the building block hypothesis, one might expect 
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Fig 4-9   The effect of mutation probabil ity and string length for 
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that the building block structure of R1 will lay out a “ royal road” for the GA to follow 

to the optimal string’ . Table 4-4 shows one of these Royal Road functions, R1. 

In their analysis, Mitchell et al. used a GA with a population size of 128, single point 

crossover with Pc fixed at 0.7 and Pm at 0.005, full details are given in [68]. Over 200 

runs the mean number of GA function evaluations was 61,334, an order of 10 times 

higher than RMHC (6,179). NAHC and SAHC never reached the optimum solution, 

which is not unexpected given the nature of the fitness landscape. 

In section 4.5.2 the importance of the GA parameters was demonstrated, although only 

on a simple smooth function that proved easier to solve by other methods. The Royal 

Road problem was investigated in the same manner to determine if the nature of the 

problem affected the relationship between the parameters. 

Initial tests were performed to see if the results of Mitchell et al. could be replicated and 

also to examine the effect of varying the GA parameters. Mutation probabilities between 

0.002 (0.13 in 64) and 0.05 (3.2 in 64) were tested for crossover probabilities between 0 

and 1 inclusive. Each set of parameters was repeated to convergence 20 times and the 

mean value recorded. Tournament selection was used where each parent was the best of 

5 randomly chosen candidates. The results are shown in Fig 4-10. 

 

Table 4-4   The Royal Road (R1) fitness function. A bit string of length 64 contains 8 short schema that 
are the building blocks of the optimal schema. The wildcard ‘ * ’ represents a 0 or 1 (or ‘do not care’ ). 
The fitness of each candidate solution increases with the number of these building blocks present. 

 
11111111 ******** ******** ******** ******** ******** ******** ********  Schema 1 = 8 

******** 11111111 ******** ******** ******** ******** ******** ********  Schema 2 = 8 

******** ******** 11111111 ******** ******** ******** ******** ********  Schema 3 = 8 

******** ******** ******** 11111111 ******** ******** ******** ********  Schema 4 = 8 

******** ******** ******** ******** 11111111 ******** ******** ********  Schema 5 = 8 
******** ******** ******** ******** ******** 11111111 ******** ********  Schema 6 = 8 

******** ******** ******** ******** ******** ******** 11111111 ********  Schema 7 = 8 

******** ******** ******** ******** ******** ******** ******** 11111111  Schema 7 = 8 
 

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111  Schema Opt  = 64 
 
11111111 11110011 01110011 11111111 11111111 00000001 11110010 11111111  e.g.   Score  = 32 
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Fig 4-10   The effect of the mutation probability for four crossover probabilities (0,0.1,0.7,1) on the Royal 
Roads (R1) landscape. Each point is the average over 20 tests with a population size of 128. Mitchell et 
al. used a mutation probability of 0.005 (0.33 in 64) and crossover probability of 0.7 that gave a mean of 
61,334 function evaluations to convergence over 200 tests. 

The results of Mitchell et al. were easily replicated even though a different selection 

procedure was used. By increasing Pm to 0.02 (1.3 in 64) the number of evaluations was 

reduced to around 14,000, a factor of 4 improvement and only twice as many as RMHC. 

With this mutation probability the function could be optimised in 28,000 evaluations 

without using crossover at all, half as many as the evidently poorly tuned GA of 

Mitchell et al. With no crossover, each offspring is a mutation of a parent chosen due to 

its fitness. 

It has been demonstrated that a GA with no crossover can outperform a poorly tuned 

GA on a fitness landscape purposely designed to suit the crossover operator. If it can be 

discovered what determines a good mutation probability with no crossover then this 

should be generally applicable when crossover is applied. 

With no crossover, the relationship between the mutation probability and selection 

procedure was examined. In previous tests on the R1 landscape tournament selection 

was used where each parent was the fittest of 5 randomly selected candidates. The num-

ber of candidates was varied along with Pm, as shown in Fig 4-11 (on page 91). What is 

clear is that the less stringent the selection, the tighter the band is for an acceptable value 

of Pm.  
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For each selection policy there is also an upper mutation probability past which the 

required evaluations increase exponentially; the more stringent the selection then the 

higher is this upper limit. 

The objective of this exercise was to discover what determines a good mutation prob-

ability, which has been shown for R1 to also depend on the selection procedure used, 

becoming more important the weaker the selection procedure. There is a definite lower 

limit around 0.005 or 0.33 in 64. 

In order to determine a desirable mutation rate the effect of the population size must also 

be investigated. Fig 4-12 (on page 92) shows that given a near optimal Pm (0.01) there is 

little sensitivity to population size, but as Pm increases so does the sensitivity to popula-

tion size. 

The conclusion reached thus far is that the mutation probability is the most important 

GA parameter in solving the R1 landscape. There is also much evidence (and common 

sense) to suggest that the optimum mutation probability is related in some way to the 

string length. In order to test this theory MRMHC (a GA with no crossover and popula-

tion size 1 with the new solution being retained if it is better than or equal to the parent) 
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Fig 4-11   The relationship between the mutation probability and the number of contestants in 
tournament selection (2,3,4, and 5). The crossover probability is 0 and the population size 
is 128. The mean of 20 trials was recorded. 
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was used to solve three versions of R1, with string lengths of 64, 128 and 256. The 

results in Fig 4-13 show that the longer the string the more sensitive is the search to Pm 

(the y-axis scale in Fig 4-13 is different for each population size). The optimum value of 

Pm was observed to be about (1.2/string length). The question to be investigated now is 

what is special about this mutation rate? 
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Fig 4-12   The effect of the mutation probability and the population size (10,40,128). In these cases 
the Pc = 0 and the number of candidate parents is 5. 
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Fig 4-13   The effect of the mutation probability on MRMHC, averaged  over 200 tests. The optimum 
is (1.2/64). 
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In their work, Mitchell et al. analysed the RMHC algorithm with a simple derivation 

based on probability that gave the expected number of function evaluations to solve R1. 

Consider R1 as in Table 4-4. In each schema of length 8 the number of possible combi-

nations is 28. If one and only one bit is changed in each evaluation then the chance of 

this bit being in a specific schema is 1/8, since there are 8 schemas in total. Thus the 

chance of randomly creating a particular schema is once every 28 × 8 evaluations. Ini-

tially there are eight schemas to choose from so the chance of creating any schema is 

once in every 28 × 8/8 evaluations. Once one schema is found the chance of finding a 

further schema decreases to 7/8 of that of finding the first since 1 in 8 bit changes are 

likely to be wasted changing the already discovered schema. The number of evaluations 

required to find this second schema thus increases to 8/7 that required to find the first. 

The expected number of evaluations to find a single schema is in fact slightly more than 

28 and as determined by a Markov-chain analysis it is 301.2 [68]. The expected number 

of evaluations to solve the problem is thus, 
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Tests were performed for RMHC that tracked the creation of the schema in the solution 

in order to confirm the theoretical performance. Table 4-5 shows the results averaged 

over 1000 trials which almost mirror the theoretical expectations. 

 

1st     discovered  schema    8th 
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RMHC has been shown to behave as the probability theory predicted. In GAs the theory 

of how they behave remains a theory, with little experimental evidence to try to observe 

their actual behaviour. 

Tests were performed using GAs on the R1 landscape that tracked the formation of the 

schema. The trials were performed 500 times with the maximum number of generations 

set at 800. The maximum, minimum and average fitness of the population were re-

corded at each generation and averaged for the trials that had not converged. Initially the 

crossover rate was set at 0.7, population size 128 and the number of competitors in the 

tournament was 5. Three mutation rates were used, 0.33/64, 1.3/64 and 2.7/64. The 

results are shown in Fig 4-14 to Fig 4-17. 
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Fig 4-14   The effect of the mutation rate on the minimum population fitness 

The lower the mutation rate the fitter is the worst individual in the population. Note that 
in all cases the minimum fitness reaches a plateau and only for the middle mutation rate 
of 1.3/64 do all the trials converge. 

Table 4-5   The theoretical and experimental (averaged over 1000 trials) number of evaluations to 
discover each subsequent schema for R1 using RMHC. The total theoretical evaluations = 6,549, experi-
mental = 6,542 and Mitchell et al. = 6,179. 

schema 1 2 3 4 5 6 7 8 

theoretical 
evaluations 

301.2 344.6 401.6 481.9 602.4 803.2 1204.8 2409.6 

experimental 
evaluations 

284 355 384 508 622 797 1182 2410 
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Fig 4-15   The effect of the mutation rate on the average population fitness 

It can be seen how the rise in average population fitness is initially high for all cases. 
The best average population is with the lowest mutation rate, but this does not find the 
global solution in all cases. 
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Fig 4-16   The effect of the mutation rate on the maximum population fitness 

Note that the high mutation rate generally limits the maximum population fitness to 6 
schema (a fitness of 48). This is because schema are destroyed as new ones are created. 
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Fig 4-17   The number of converged trials at each generation for the three mutation rates 

Quite clearly from a pure optimisation perspective, where the goal is to find the global 
solution, the mutation rate of 1.3/64 is superior in all respects, as shown by Fig 4-17. 

 

Fig 4-18 to Fig 4-21 show the effect of the crossover probability for the near optimum 
mutation rate of 1/64. It can be seen that increasing Pc only improves the speed to con-
vergence, with no other effect on the behaviour of the GA, as identified by all the lines 
converging to the same fitness value. In all cases every trial converged, even with Pc=0. 
The conclusion drawn is that mutation is the most important operator for this particular 
problem. 
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Fig 4-18   The effect of Pc  on the minimum fitness 
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Fig 4-19 The effect of Pc on the average fitness 
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Fig 4-20   The effect of Pc on the maximum fitness 
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Fig 4-21 The number of converged trials at each generation for the three crossover probabilities 

 

4.6 Chapter Summary 

The work in this chapter has been an empirical investigation of parameters that affect 

GA performance. As commented in [73], ‘ there is a growing realisation that results 

obtained empirically are no less valuable than theoretical results’ . 

What has been concluded is summed up in [74], ‘From a function optimization point of 

view, GAs frequently don’ t exhibit a kil ler “ instinct” in the sense that, although they 

rapidly locate the region in which a global optimum exists, they don’ t locate the opti-

mum with similar speed’ . 

This ‘killer instinct’ has been shown to be dependent on the mutation rate, which is 

critical for eff icient GA performance in global optimisation. In humans, characteristics 

of individuals that enable them to stand out from the norm are often a result of mutation. 

This is exempli fied by Veikko Hakulinen, a Finnish cross-country skier who won med-

als in the 50k, 30k, 15k and 4x10k relay at the 1956 winter Olympics. On medical 

examination it was found that he had an excessive red blood cell count that enabled him 

to take in more oxygen and not become out of breath. This was caused by a genetic 

defect with a probability of occurring equal to that of picking a specific light bulb with 

all the light bulbs on earth to choose from. 
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There has been much theoretical academic work in trying to improve the eff iciency of 

GAs by optimising parameter settings. In other work, previously claimed ‘good’ settings 

are taken and used on totally unrelated problems. If GAs are to be used for function 

optimisation then a thorough investigation of the parameters is required. 

It must be remembered that ‘Genetic algorithms are NOT function optimizers’ [74] and 

that other techniques do exist, that, although they do not sound as interesting, may be 

more appropriate for solving a particular class of problem. Optimising a system where 

there is no information on the dynamics (‘black box optimisation’) is essentially a di-

rected random search, with the direction being guided by the strategy used. The purpose 

of these strategies is to guide the search to increase the probabil ity that in time, a solu-

tion will be found. As was demonstrated (see Table 4-5), on average over many trials, 

random mutation hill climbing behaves exactly as a Markov chain analysis predicts. Nix 

and Vose [75] performed a similar Markov chain analysis for a simple genetic algorithm 

and claim that ‘ if the finite population is sufficiently large, we can accurately predict the 

convergence behaviour of a real GA’ . 

Along with GA’s, simulated annealing [76] is another popular strategy for ‘black box’ 

optimisation that is inspired by nature. This is based around the fact that close tempera-

ture control must be maintained when cooling liquids into solids in order to attain a 

specific lattice structure. The most energy eff icient lattice structure is obtained by very 

slow cooling and sometimes slight heating. This is reflected in the optimisation by only 

applying slight random perturbations and limiting the ‘ temperature gradient’ (the 

amount of improvement allowed in new solutions). Successive solutions are also al-

lowed to be ‘hotter’ (or worse) than previous attempts. 

Many other optimisation strategies exist [77], including and tabu search [78] and branch 

and bound [79] (branch and bound methods are not strictly black box since they rely 

explicitly on the cost structure of partial solutions [80]). 

In conclusion ‘ for any algorithm, any elevated performance over one class of problems 

is offset by performance over another class’ [ 80]. 
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In chapter 5 a variation of RMHC is used for the optimisation of a domestic hot water 

tank based on real-time pricing of electricity. 
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