
73

44
Genetic Inspired Optimisation

4.1 What are Genetic Algorithms?

Genetic algorithms (GAs) are directed random search techniques used to look for pa-

rameters that provide a good solution to a problem. Essentially they are nothing more

than educated guessing. The ‘education’ comes from knowing the suitability of previous

candidate solutions and the ‘guessing’ comes from combining the fitter attempts in order

to evolve an improved solution.

For example, the back propagation algorithm is a gradient based method for finding a

weight set for a MLP that best maps the inputs onto the output, a search that can also be

performed by GAs [7]. The optimisation problem of interest in this work is finding a

schedule for electrically charging storage devices (hot water tanks and storage radiators)

over a 24 hour period, given that electricity prices vary half-hourly. A solution is sought

74

that minimises electricity costs whilst satisfying the hot water or thermal comfort re-

quirements.

4.2 How do GAs Work?

The inspiration for GAs came from nature and survival of the fittest. In a population,

each individual has a set of characteristics that determine how well suited it is to the

environment. Survival of the fittest implies that the ‘fitter’ individuals are more likely to

survive and have a greater chance of passing their ‘good’ features to the next generation.

In sexual reproduction, if the best features of each parent are inherited by their offspring,

a new individual will be created that should have an improved probability of survival.

This is the process of evolution.

In nature the ‘blueprint’ of individuals is contained within their DNA. The DNA can be

thought of as a string of genes, with each gene or combination of genes representing a

particular feature. Reproduction is the ‘crossover’ of two DNA strings to produce a new

blueprint that has genes from both parents. Mutation can also occur where a particular

gene is not an exact copy of either parent.

In genetic algorithm terms, a candidate solution is often referred to as a chromosome or

string, which is a sequence of encoded numbers. This is commonly referred to as a bit

string if the numbers are binary encoded.

The process involved in GA optimisation problems is based on that of natural evolution

and broadly works as follows,

1. Randomly generate an initial population of potential solutions.

2. Evaluate the suitability or ‘fitness’ of each solution.

3. Select two solutions biased in favour of fitness.

4. Crossover the solutions at a random point on the string to produce two new solutions.

75

5. Mutate the new solutions based on a mutation probability.

6. Goto 2.

4.3 The GA Operators

Selection, crossover and mutation are the basic operators involved in GAs. How these

and other factors can affect the operation of GAs will be demonstrated by means of

several examples and experimental observations.

Consider the popular board game ‘Mastermind’ where a player has to determine a hid-

den sequence of colours starting from an initial random guess. This initial guess is

scored with a black marker for each colour in the correct position and a white marker for

a correct colour but in the wrong position. Further guesses are made and scored until the

correct sequence is determined or a given number of attempts have been made. In this

game the correct solution evolves from the more suitable of all previous attempts, with

clues from unsuitable candidate solutions also being part of the deduction process. This

is a type of ‘blind’ optimisation problem where no information is available on what

makes a good solution, only information on how good solutions are.

Given a few initial guesses the player will select high scoring attempts and perform

crossover to see if this results in an improvement. New colours will almost certainly

have to be mutated into the ‘educated guesses’ in the attempt to find the correct se-

quence.

Fig 4-1 demonstrates how these three operators work considering a scoring scheme

where a point is scored only for a number in the correct position.

The GA search procedure is very easy to understand and implement, with nature provid-

ing ready examples of exactly how things could be done.

76

required solution

1 2 4 3

attempt score
 1 1 4 2 1 1

 2 2 1 4 4 1 >selection

 3 2 1 2 3 2 >selection

 4 3 1 2 4 1 crossover

 5 4 1 2 4 3 mutation

Fig 4-1 An example of how the required solution evolves using the selection, crossover and mutation
operators

4.4 Implementation

4.4.1 Encoding

In optimisation problems a set of parameters is sought that will give the best solution to

a particular problem. In order to implement a GA these parameters must be encoded into

a string so that crossover and mutation can be applied. Binary encodings are the most

common, due to the fact that Holland used them in his early pioneering work [66]. In

DNA base 4 encoding is used, as the building blocks of DNA can take on 4 values,

translated as A, C, G, or T.

Any base can be used, as it is just a different method of encoding the same information,

but the lower the base the longer the string will be. For example, if a number is sought

between 0 and 255 then this can be encoded as a binary string of length 8, a base 4 string

of length 4, a base 16 string of length 2 or a base 256 string of length 1, as shown in

Table 4-1.

77

It is clear that the importance of the operators will change depending on the base used.

In base 2, the two given strings contain all the information required to derive any num-

ber between 0-255 by crossover alone. In base 16, two strings can at most lead to only 4

different numbers by crossover alone, mutation being required to introduce new infor-

mation. In base 256 crossover cannot occur, mutation being the only operator that can

introduce new numbers and finding a specific number becomes a pure random search.

In choosing an encoding scheme the nature of the problem will play a major role. If

many real valued numbers are required in a solution then binary encoding becomes

impractical as the string length increases. In [67] a method of selective genome growth

is proposed that helps solve the problem of choosing how to represent a genetic algo-

rithm.

4.4.2 Population Size

The population size is the number of candidate solutions in any one generation. In natu-

ral evolution the total population size is governed by what is sustainable by the

environment and similarly in GAs the larger the population size the more computation-

ally intensive (in terms of memory requirement) is the search.

In nature, the bigger the gene pool the more diverse is the genetic make up of the popu-

lation with many individuals each with their own set of characteristics that enable them

to survive. One advantage of this diversity is that there will be no dominant gene that,

for instance, may be susceptible to a particular disease and result in the elimination of

the whole species. In the bird family, sub-species have evolved with dominant character-

Table 4-1 Representations of the base 10 numbers 0 and 255 in different bases

base 2
length=8

base 4
length=4

base 10
length=3

base 16
length=2

base 256
length=1

00000000 0000 000 00 0
11111111 3333 255 FF or |15|15| |255|

78

istics that allow them to survive their local conditions and in effect are sub-optimal

solutions in the search for a global ‘super-bird’. With large populations it can be seen

how the search for the global optimal solution can be a slow (if not never-ending) proc-

ess.

If the population size is small (e.g. a pride of lions), then a strong individual quickly

becomes dominant and the diversity of the gene pool is restricted. The result is that good

individuals (local optima) are quickly created but the dominance of particular genes

restricts the search space. The chance of evolving the ultimate ‘super-lion(ess)’ (global

optimum) is severely limited and would depend on mutation introducing new genes to

diversify the search.

As new solutions are generated it is common to keep the population size constant by

eliminating individuals (or letting them die), although this does not have to be the case.

Ideas for the selection procedure for elimination are plentiful in nature. For example,

each generation could be completely replaced by its offspring, or as a new offspring is

created it could be accepted or rejected depending on its fitness. The advantage com-

puters have over nature is that good individuals do not have to die and can be retained

for indefinite reproduction. The retention of certain fit individuals is known as ‘elitism’.

4.4.3 Selection

This is the procedure for choosing individuals (parents) on which to perform crossover

in order to create new solutions. The idea is that the ‘fitter’ individuals are more promi-

nent in the selection process, with the hope that the offspring they create will be even

fitter still.

Two commonly used procedures are ‘roulette wheel’ and ‘tournament’ selection. In

roulette wheel, each individual is assigned a slice of a wheel, the size of the slice being

proportional to the fitness of the individual. The wheel is then spun and the individual

opposite the marker becomes one of the parents. In tournament selection several indi-

viduals are chosen at random and the fittest becomes one of the parents.

79

4.4.4 Crossover

Along with mutation, crossover is the operator that creates new candidate solutions. A

position is randomly chosen on the string and the two parents are ‘crossed over’ at this

point to create two new solutions. Multiple point crossover is where this occurs at sev-

eral points along the string. A crossover probability (Pc) is often given which enables a

chance that the parents descend into the next generation unchanged.

4.4.5 Mutation

After crossover, each bit of the string has the potential to mutate, based on a mutation

probability (Pm). In binary encoding mutation involves the flipping of a bit from 0 to 1

or vice versa.

4.5 Experiments with GAs

4.5.1 Chinese Hat Optimisation Problem

To empirically evaluate the importance of the various parameters and techniques in

GAs, several optimisation tests were performed. The code used is based on that in Ap-

pendix D. The experiments used tournament selection and a constant population size

with the offspring replacing the parents every generation.

The fitness evaluation function (fitness landscape, scoring template) of candidate solu-

tions for the first optimisation problem examined is shown in Table 4-2. For reference

purposes this problem has been named the Chinese Hat because the scoring template

diverges linearly outwards from the centre. There are two possible solutions for maxi-

mum fitness, one of which is shown by candidate solution 2, the other is the inverse of

this where all the bits flip. The total number of candidate solutions is 2(string length).

80

In the experiments, tests for each particular parameter setting were repeated to conver-

gence 200 times to determine the average number of generations required to find the

solution. Each subsequent trial differed by randomly generating a new initial population.

After each crossover, mutation was only allowed on one randomly selected bit and

whether it occurred depended on Pm.

4.5.2 Results

The results of varying the GA parameters for the Chinese Hat optimisation problem are

shown in Fig 4-2 to Fig 4-8. All comments and discussion related to each figure are

included below that figure.

Table 4-2 An example of how the fitness of the solutions to the Chinese Hat problem are evaluated for a
string length of 8. Each bit value in a solution is multiplied by the value in the same position in the
scoring template and the total fitness is the square of the sum of all the bit scores. Each bit can have a
value of 1 or –1

Scoring Template 4 3 2 1 -1 -2 -3 -4

Candidate Solution 1 1 1 -1 1 -1 -1 1 -1

Bit by bit Score 1 4 3 -2 1 1 2 -3 4
Total Score 1 = 102 = 100

Candidate Solution 2 -1 -1 -1 -1 1 1 1 1

Bit by bit Score 2 -4 -3 -2 -1 -1 -2 -3 -4
Total Score 2 = (-20)2 = 400

81

0

100

200

300

400

500

600

700

.1 .2 .3 .4 .5 .6 .7 .8 .9
Mutation Probability

A
ve

 G
en

er
at

io
ns

 to
 S

ol
ut

io
n 2

3
4

population size = 30
string length = 50

no elitism

number in
tournament

Fig 4-2 The effects of Pm and the selection procedure

By increasing the number of candidates (competitors) in the tournament for parenthood
the number of generations required to convergence reduces. This would indicate that
little diversity in the gene pool is required for this particular problem. There is also an
optimum Pm around 0.5. With a higher mutation probability the number of generations
starts to increase, although this becomes less significant as the selection procedure is
made more competitive. In Fig 4-2, Pc =1.

0

20

40

60

80

100

120

.1 .2 .3 .4 .5 .6 .7 .8 .9

Mutation Probability

A
ve

 G
en

er
at

io
ns

 to
 S

ol
ut

io
n

population size = 30
string length = 50

elitism used = E
3

4
3E

4E

number in
tournament

Fig 4-3 Elitism

The introduction of an elitist strategy, where the best individual is always retained,
shows significant improvements in performance but only for the higher mutation rates,
indicating the solution is evolved from mutation of this ‘best’ individual.

82

5 20 40 60 80 100
0

100

200

300

400

Population Size

A
ve

 G
en

er
at

io
ns

 to
 S

ol
ut

io
n number in tournament = 3

string length = 50
mutation probability = 0.5

no elitism

elitism

Fig 4-4 Population size

As would be expected, the larger the population size the fewer generations are required
as the search space is increased. The highest rates of gain are seen by increasing the
population size to 20, but even after this consistent reduction still occurs, as shown in
Fig 4-5.

20

25

30

35

40

45

50

55

20 30 40 50 60 70 80 90 100
Population Size

A
ve

 G
en

er
at

io
ns

 to
 S

ol
ut

io
n number in tournament = 3

string length = 50
mutation probability = 0.5

no elitism

elitism

Fig 4-5 Population size

A close up of Fig 4-4 shows consistent improvement in performance with increasing
population size.

83

0

50

100

150

200

250

5 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

A
ve

 G
en

er
at

io
ns

 to
 S

ol
ut

io
n

Population Size

Function E
valuations

Generations

Evaluations

Fig 4-6 Function evaluations

In serial computing it is not the number of generations that is important but the number
of function evaluations. That is, how many solutions must be evaluated before the opti-
mum is reached, or roughly the number of generations multiplied by the population size.
This gives an indication of the computing power (or time) required to solve the problem,
assuming that evaluating the cost of each solution is a significant portion of the whole
process. Fig 4-6 is the same data as that of the elitist tests in Fig 4-4, but with the num-
ber of evaluations also shown. It can be seen that for the given parameters, a population
size of 6 is the most economical. After this the number of evaluations increases linearly
with population size.

84

50

100

150

200

250

300

350

400

450

.1 .2 .3 .4 .5 .6 .7 .8 .9

population size = 6

Mutation Probability

A
ve

 G
en

er
at

io
ns

 to
 S

ol
ut

io
n

string length = 50
elitism

number in tournament = 3

crossover probabilities
of 0, 0.5 and 1

Fig 4-7 The effect of crossover and mutation probabilities for a population size of 6

Thus far crossover has occurred in every reproduction. By introducing a crossover prob-
ability, the relative importance of crossover and mutation can be examined. This is
shown for the most efficient population size of 6 and crossover probabilities of 0, 0.5
and 1. What is seen is that the optimisation procedure for this small population relies
solely on mutation with the crossover probability having a negligible effect.

40

50

60

70

80

90

100

110

.1 .2 .3 .4 .5 .6 .7 .8 .9

0.0

0.3
0.7
1.0

population size = 30

string length = 50
elitism

number in tournament = 3

Mutation Probability

A
ve

 G
en

er
at

io
ns

 to
 S

ol
ut

io
n

crossover
probability

Fig 4-8 The effect of crossover and mutation probabilities for a population size of 30

With a larger population size increasing the crossover probability does improve the
performance. Fig 4-8 is generated by the same procedure as Fig 4-7 but with a popula-
tion size of 30. It can be seen with this larger population size there is an optimal Pm but
improvements are also made by increasing Pc. What Fig 4-7 and Fig 4-8 show is not
unexpected and is reflected in nature in that small populations rely on mutation for
diversity whereas in larger populations it is a combination of crossover and mutation.

85

The experiments on this simple optimisation problem have illustrated that selecting the

correct parameters is very important in genetic algorithms. What is also very evident is

that there are definite relationships between all the parameters showing that fine-tuning

is required to increase the speed to success, or reduce the chance of failure. The tech-

nique always managed to solve the problem, but how does it compare with other hill-

climbing methods?

4.5.3 Other Iterated Hill-Climbing Methods

Other optimisation methods exist of which three were used for comparison with the GA.

The following descriptions of these techniques are reproduced from [68].

4.5.3.1 Steepest-Ascent Hill Climbing (SAHC)

1. Choose a string at random. Call this string current-hilltop.

2. Going from left to right, systematically flip each bit in the string, recording the

fitness of the resulting strings.

3. If any of the resulting strings give a fitness increase, then set current-hilltop to

the resulting string giving the highest fitness increase (ties are decided at ran-

dom).

4. If there is no fitness increase, then save current-hilltop and goto step 1. Other-

wise goto step 2 with the new current-hilltop.

5. When a set number of function evaluations have been performed (here, each bit

flip in step 2 is followed by a function evaluation), return the highest hilltop that

was found.

4.5.3.2 Next-Ascent Hill Climbing (NAHC)

1. Choose a string at random. Call this string current-hilltop.

86

2. For i from 1 to l (where l is the length of the string), flip bit i; if this results in a

fitness increase, keep the new string, otherwise flip bit i back. As soon as a fit-

ness increase is found, set current-hilltop to that increased fitness string without

evaluating any more bit flips of the original string. Go to step 2 with the new

current-hilltop, but continue mutating the new string starting immediately after

the bit position at which the previous fitness increase was found.

3. If no increase in fitness were found, save the current-hilltop and goto step 1.

4. When a set number of function evaluations has been performed, return the high-

est hilltop that was found.

4.5.3.3 Random-Mutation Hill Climbing (RMHC)

1. Choose a string at random. Call this string current-hilltop.

2. Choose a bit at random to flip. If the flip leads to an equal or higher fitness, then

set current-hilltop to the resulting string.

3. Goto step 2 until an optimum string has been found or until a maximum number

of evaluations has been performed.

4. Return the current value of current-hilltop.

1000 trials of each of these three algorithms were performed on the Chinese Hat prob-

lem for a string length of 50. The average number of evaluations, given in Table 4-3,

shows that a GA is not the best method of solving this particular problem. In fact NAHC

always reaches a global solution by traversing the string just once because the Chinese

Hat is a smooth function when traversed from left to right.

87

The best GA based performance had a population size of 6 with a randomly selected

gene being mutated with a probability of 0.5. With these parameters it was shown that

crossover had a very limited effect (Fig 4-7, on page 84). As mutation appears to be the

dominant process a variation of RMHC we called multiple random mutation hill climb-

ing (MRMHC) was tried on the Chinese Hat function. This is basically RMHC but with

each gene having a mutation probability as opposed to one randomly selected gene

being mutated. Another way of describing MRMHC is a GA with a population size of 1

and the mutated offspring only surviving if it is as good as or better than the parent.

Fig 4-9 (on page 88) shows the average performance of MRMHC over 1000 tests with

varying mutation probabilities and string lengths. The circled points represent the opti-

mum mutation probabilities for the various string lengths with a pattern emerging that a

Pm of (1/string length) appears to be the optimum. On average this is equivalent to 1 bit

change per mutation which is an unsurprising result. Any less than this and some

evaluations will be wasted as there will be no change, any more and there will be prob-

lems in fitting the last bit into position as there is a higher probability that more than one

bit will be changed at once. The best performance with MRMHC for a string length of

50 was 430 evaluations, which occurred with Pm at just over 1/50 or 0.02.

The optimum mutation rate for MRMHC is on average 1 bit change per string, which is

almost similar to RMHC, in which only one bit change per string is permitted. Similar

results would be expected but it is noted that MRMHC requires over twice as many

evaluations as RMHC. Why should this be so?

Table 4-3 The average number of function evaluations over 1000 trials for the Chinese Hat problem
with a string length of 50

SAHC NAHC RMHC best GA MRMHC
1082 48.6 190 650 430

88

If there is only one bit flip that is required to reach the optimum then RMHC should find

this in an average number of evaluations equivalent to the string length. In MRMHC it

is possible that in three consecutive evaluations the number of bit flips is 0,1 and 2,

giving an average of 1. An evaluation with 0 flips is wasted and because only one bit

requires correction, two bit flips will never find the optimum. It can thus be hypothe-

sised why MRMHC gives a worse performance than RMHC for this particular problem.

4.5.4 Royal Road Functions

So what kind of problems will GAs be superior at solving than other search techniques?

The Schema Theorem and Building Block Hypothesis [66, 69] play on the idea that

solutions are made up of short blocks of fit schema that use crossover to build up these

schema into desirable solutions. A set of functions known as the ‘Royal Roads’ [68, 70,

71, 72] were developed that provide a fitness landscape designed specifically to be

easily solvable by GAs if they did work in this building block manner. As described by

the developers (Mitchell et al.), ‘given the building block hypothesis, one might expect

0

500

1000

1500

2000

2500

3000

3500

4000

0.00 0.02 0.04 0.06 0.08 0.10

string length = 50

string length = 25

string length = 75

Mutation Probability

A
ve

 F
un

ct
io

n
E

va
lu

at
io

ns

Fig 4-9 The effect of mutation probability and string length for

Multiple Random Mutation Hill Climbing optimisation

89

that the building block structure of R1 will lay out a “royal road” for the GA to follow

to the optimal string’. Table 4-4 shows one of these Royal Road functions, R1.

In their analysis, Mitchell et al. used a GA with a population size of 128, single point

crossover with Pc fixed at 0.7 and Pm at 0.005, full details are given in [68]. Over 200

runs the mean number of GA function evaluations was 61,334, an order of 10 times

higher than RMHC (6,179). NAHC and SAHC never reached the optimum solution,

which is not unexpected given the nature of the fitness landscape.

In section 4.5.2 the importance of the GA parameters was demonstrated, although only

on a simple smooth function that proved easier to solve by other methods. The Royal

Road problem was investigated in the same manner to determine if the nature of the

problem affected the relationship between the parameters.

Initial tests were performed to see if the results of Mitchell et al. could be replicated and

also to examine the effect of varying the GA parameters. Mutation probabilities between

0.002 (0.13 in 64) and 0.05 (3.2 in 64) were tested for crossover probabilities between 0

and 1 inclusive. Each set of parameters was repeated to convergence 20 times and the

mean value recorded. Tournament selection was used where each parent was the best of

5 randomly chosen candidates. The results are shown in Fig 4-10.

Table 4-4 The Royal Road (R1) fitness function. A bit string of length 64 contains 8 short schema that
are the building blocks of the optimal schema. The wildcard ‘*’ represents a 0 or 1 (or ‘do not care’).
The fitness of each candidate solution increases with the number of these building blocks present.

11111111 ******** ******** ******** ******** ******** ******** ******** Schema 1 = 8
******** 11111111 ******** ******** ******** ******** ******** ******** Schema 2 = 8
******** ******** 11111111 ******** ******** ******** ******** ******** Schema 3 = 8
******** ******** ******** 11111111 ******** ******** ******** ******** Schema 4 = 8
******** ******** ******** ******** 11111111 ******** ******** ******** Schema 5 = 8
******** ******** ******** ******** ******** 11111111 ******** ******** Schema 6 = 8
******** ******** ******** ******** ******** ******** 11111111 ******** Schema 7 = 8
******** ******** ******** ******** ******** ******** ******** 11111111 Schema 7 = 8

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 Schema Opt = 64

11111111 11110011 01110011 11111111 11111111 00000001 11110010 11111111 e.g. Score = 32

90

0

50

100

150

200

250

300

350

0 0.01 0.02 0.03 0.04 0.05

Fu
nc

tio
n

E
va

lu
at

io
ns

 (‘
00

0s
)

Mutation Probability

0

 0.1

0.7

 1Mitchell et al.

Fig 4-10 The effect of the mutation probability for four crossover probabilities (0,0.1,0.7,1) on the Royal
Roads (R1) landscape. Each point is the average over 20 tests with a population size of 128. Mitchell et
al. used a mutation probability of 0.005 (0.33 in 64) and crossover probability of 0.7 that gave a mean of
61,334 function evaluations to convergence over 200 tests.

The results of Mitchell et al. were easily replicated even though a different selection

procedure was used. By increasing Pm to 0.02 (1.3 in 64) the number of evaluations was

reduced to around 14,000, a factor of 4 improvement and only twice as many as RMHC.

With this mutation probability the function could be optimised in 28,000 evaluations

without using crossover at all, half as many as the evidently poorly tuned GA of

Mitchell et al. With no crossover, each offspring is a mutation of a parent chosen due to

its fitness.

It has been demonstrated that a GA with no crossover can outperform a poorly tuned

GA on a fitness landscape purposely designed to suit the crossover operator. If it can be

discovered what determines a good mutation probability with no crossover then this

should be generally applicable when crossover is applied.

With no crossover, the relationship between the mutation probability and selection

procedure was examined. In previous tests on the R1 landscape tournament selection

was used where each parent was the fittest of 5 randomly selected candidates. The num-

ber of candidates was varied along with Pm, as shown in Fig 4-11 (on page 91). What is

clear is that the less stringent the selection, the tighter the band is for an acceptable value

of Pm.

91

For each selection policy there is also an upper mutation probability past which the

required evaluations increase exponentially; the more stringent the selection then the

higher is this upper limit.

The objective of this exercise was to discover what determines a good mutation prob-

ability, which has been shown for R1 to also depend on the selection procedure used,

becoming more important the weaker the selection procedure. There is a definite lower

limit around 0.005 or 0.33 in 64.

In order to determine a desirable mutation rate the effect of the population size must also

be investigated. Fig 4-12 (on page 92) shows that given a near optimal Pm (0.01) there is

little sensitivity to population size, but as Pm increases so does the sensitivity to popula-

tion size.

The conclusion reached thus far is that the mutation probability is the most important

GA parameter in solving the R1 landscape. There is also much evidence (and common

sense) to suggest that the optimum mutation probability is related in some way to the

string length. In order to test this theory MRMHC (a GA with no crossover and popula-

tion size 1 with the new solution being retained if it is better than or equal to the parent)

0

100

200

300

400

500

600

700

800

0 0.010 0.020 0.030

2 3
4

5

Mutation Probability

Fu
nc

tio
n

E
va

lu
at

io
ns

 (‘
00

0s
)

Fig 4-11 The relationship between the mutation probability and the number of contestants in

tournament selection (2,3,4, and 5). The crossover probability is 0 and the population size
is 128. The mean of 20 trials was recorded.

92

was used to solve three versions of R1, with string lengths of 64, 128 and 256. The

results in Fig 4-13 show that the longer the string the more sensitive is the search to Pm

(the y-axis scale in Fig 4-13 is different for each population size). The optimum value of

Pm was observed to be about (1.2/string length). The question to be investigated now is

what is special about this mutation rate?

0

100

200

300

400

500

600

0 0.005 0.01 0.015 0.02 0.025 0.03

Fu
nc

tio
n

E
va

lu
at

io
ns

 (‘
00

0s
)

Mutation Probability

10
40

128

Fig 4-12 The effect of the mutation probability and the population size (10,40,128). In these cases
the Pc = 0 and the number of candidate parents is 5.

0
0 0.01 0.02 0.03 0.04 0.05

64
128

256

64
1.2

128
 1.2

256
 1.2E

va
lu

at
io

ns
 (l

in
ea

r s
ca

le
)

Mutation Probability
Fig 4-13 The effect of the mutation probability on MRMHC, averaged over 200 tests. The optimum

is (1.2/64).

93

In their work, Mitchell et al. analysed the RMHC algorithm with a simple derivation

based on probability that gave the expected number of function evaluations to solve R1.

Consider R1 as in Table 4-4. In each schema of length 8 the number of possible combi-

nations is 28. If one and only one bit is changed in each evaluation then the chance of

this bit being in a specific schema is 1/8, since there are 8 schemas in total. Thus the

chance of randomly creating a particular schema is once every 28 × 8 evaluations. Ini-

tially there are eight schemas to choose from so the chance of creating any schema is

once in every 28 × 8/8 evaluations. Once one schema is found the chance of finding a

further schema decreases to 7/8 of that of finding the first since 1 in 8 bit changes are

likely to be wasted changing the already discovered schema. The number of evaluations

required to find this second schema thus increases to 8/7 that required to find the first.

The expected number of evaluations to find a single schema is in fact slightly more than

28 and as determined by a Markov-chain analysis it is 301.2 [68]. The expected number

of evaluations to solve the problem is thus,

3012 8 1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

. × × + + + + + + +

Tests were performed for RMHC that tracked the creation of the schema in the solution

in order to confirm the theoretical performance. Table 4-5 shows the results averaged

over 1000 trials which almost mirror the theoretical expectations.

1st discovered schema 8th

94

RMHC has been shown to behave as the probability theory predicted. In GAs the theory

of how they behave remains a theory, with little experimental evidence to try to observe

their actual behaviour.

Tests were performed using GAs on the R1 landscape that tracked the formation of the

schema. The trials were performed 500 times with the maximum number of generations

set at 800. The maximum, minimum and average fitness of the population were re-

corded at each generation and averaged for the trials that had not converged. Initially the

crossover rate was set at 0.7, population size 128 and the number of competitors in the

tournament was 5. Three mutation rates were used, 0.33/64, 1.3/64 and 2.7/64. The

results are shown in Fig 4-14 to Fig 4-17.

0.005 (0.33/64)

0.02 (1.3/64)

0.042 (2.7/64)

0

8

16

24

32

40

48

56

64

0 100 200 300 400 500 600 700 800
Generations

M
in

im
um

 P
op

ul
at

io
n

Fi
tn

es
s

Fig 4-14 The effect of the mutation rate on the minimum population fitness

The lower the mutation rate the fitter is the worst individual in the population. Note that
in all cases the minimum fitness reaches a plateau and only for the middle mutation rate
of 1.3/64 do all the trials converge.

Table 4-5 The theoretical and experimental (averaged over 1000 trials) number of evaluations to
discover each subsequent schema for R1 using RMHC. The total theoretical evaluations = 6,549, experi-
mental = 6,542 and Mitchell et al. = 6,179.

schema 1 2 3 4 5 6 7 8
theoretical
evaluations 301.2 344.6 401.6 481.9 602.4 803.2 1204.8 2409.6

experimental
evaluations 284 355 384 508 622 797 1182 2410

95

0

8

16

24

32

40

48

56

64

0 100 200 300 400 500 600 700 800
Generations

A
ve

ra
ge

 P
op

ul
at

io
n

Fi
tn

es
s 0.005 (0.33/64)

0.02 (1.3/64)

0.042 (2.7/64)

Fig 4-15 The effect of the mutation rate on the average population fitness

It can be seen how the rise in average population fitness is initially high for all cases.
The best average population is with the lowest mutation rate, but this does not find the
global solution in all cases.

0

8

16

24

32

40

48

56

64

0 100 200 300 400 500 600 700 800
Generations

M
ax

im
iu

m
 P

op
ul

at
io

n
Fi

tn
es

s 0.005 (0.33/64)0.02 (1.3/64)

0.042 (2.7/64)

Fig 4-16 The effect of the mutation rate on the maximum population fitness

Note that the high mutation rate generally limits the maximum population fitness to 6
schema (a fitness of 48). This is because schema are destroyed as new ones are created.

96

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800

0.005 (0.33/64)0.02 (1.3/64)

0.042 (2.7/64)

Generations

no
. o

f C
on

ve
rg

ed
 T

ria
ls

Fig 4-17 The number of converged trials at each generation for the three mutation rates

Quite clearly from a pure optimisation perspective, where the goal is to find the global
solution, the mutation rate of 1.3/64 is superior in all respects, as shown by Fig 4-17.

Fig 4-18 to Fig 4-21 show the effect of the crossover probability for the near optimum
mutation rate of 1/64. It can be seen that increasing Pc only improves the speed to con-
vergence, with no other effect on the behaviour of the GA, as identified by all the lines
converging to the same fitness value. In all cases every trial converged, even with Pc=0.
The conclusion drawn is that mutation is the most important operator for this particular
problem.

0

8

16

24

32

0 50 100 150 200 250 300
Generations

M
in

im
um

 P
op

ul
at

io
n

Fi
tn

es
s

Pm = 1/64

PC = 0

PC = 0.5

PC = 1

Fig 4-18 The effect of Pc on the minimum fitness

97

0

8

16

24

32

40

48

56

0 50 100 150 200 250 300
Generations

A
ve

ra
ge

 P
op

ul
at

io
n

Fi
tn

es
s

Pm = 1/64

PC = 0
PC = 0.5

PC = 1

Fig 4-19 The effect of Pc on the average fitness

0

8

16

24

32

40

48

56

64

0 50 100 150 200 250 300
Generations

M
ax

im
um

 P
op

ul
at

io
n

Fi
tn

es
s

Pm = 1/64

PC = 0

PC = 0.5

PC = 1

Fig 4-20 The effect of Pc on the maximum fitness

98

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800
Generations

no
. o

f C
on

ve
rg

ed
 T

ria
ls

Pm = 1/64

PC = 0
PC = 0.5
PC = 1

Fig 4-21 The number of converged trials at each generation for the three crossover probabilities

4.6 Chapter Summary

The work in this chapter has been an empirical investigation of parameters that affect

GA performance. As commented in [73], ‘there is a growing realisation that results

obtained empirically are no less valuable than theoretical results’.

What has been concluded is summed up in [74], ‘From a function optimization point of

view, GAs frequently don’t exhibit a killer “instinct” in the sense that, although they

rapidly locate the region in which a global optimum exists, they don’t locate the opti-

mum with similar speed’.

This ‘killer instinct’ has been shown to be dependent on the mutation rate, which is

critical for efficient GA performance in global optimisation. In humans, characteristics

of individuals that enable them to stand out from the norm are often a result of mutation.

This is exemplified by Veikko Hakulinen, a Finnish cross-country skier who won med-

als in the 50k, 30k, 15k and 4x10k relay at the 1956 winter Olympics. On medical

examination it was found that he had an excessive red blood cell count that enabled him

to take in more oxygen and not become out of breath. This was caused by a genetic

defect with a probability of occurring equal to that of picking a specific light bulb with

all the light bulbs on earth to choose from.

99

There has been much theoretical academic work in trying to improve the efficiency of

GAs by optimising parameter settings. In other work, previously claimed ‘good’ settings

are taken and used on totally unrelated problems. If GAs are to be used for function

optimisation then a thorough investigation of the parameters is required.

It must be remembered that ‘Genetic algorithms are NOT function optimizers’ [74] and

that other techniques do exist, that, although they do not sound as interesting, may be

more appropriate for solving a particular class of problem. Optimising a system where

there is no information on the dynamics (‘black box optimisation’) is essentially a di-

rected random search, with the direction being guided by the strategy used. The purpose

of these strategies is to guide the search to increase the probability that in time, a solu-

tion will be found. As was demonstrated (see Table 4-5), on average over many trials,

random mutation hill climbing behaves exactly as a Markov chain analysis predicts. Nix

and Vose [75] performed a similar Markov chain analysis for a simple genetic algorithm

and claim that ‘if the finite population is sufficiently large, we can accurately predict the

convergence behaviour of a real GA’.

Along with GA’s, simulated annealing [76] is another popular strategy for ‘black box’

optimisation that is inspired by nature. This is based around the fact that close tempera-

ture control must be maintained when cooling liquids into solids in order to attain a

specific lattice structure. The most energy efficient lattice structure is obtained by very

slow cooling and sometimes slight heating. This is reflected in the optimisation by only

applying slight random perturbations and limiting the ‘temperature gradient’ (the

amount of improvement allowed in new solutions). Successive solutions are also al-

lowed to be ‘hotter’ (or worse) than previous attempts.

Many other optimisation strategies exist [77], including and tabu search [78] and branch

and bound [79] (branch and bound methods are not strictly black box since they rely

explicitly on the cost structure of partial solutions [80]).

In conclusion ‘for any algorithm, any elevated performance over one class of problems

is offset by performance over another class’ [80].

100

In chapter 5 a variation of RMHC is used for the optimisation of a domestic hot water

tank based on real-time pricing of electricity.

101

55
Domestic Hot Water Optimisation

5.1 Introduction

The objective of this thesis is to develop control strategies for electric thermal storage

(ETS) systems under real-time pricing tariffs. The ETS devices under consideration are

domestic hot water tanks and storage radiators. In the previous chapters the tools that are

to be employed were investigated and chapters 5,6 and 7 evaluate the effectiveness of

these tools in both simulation and actuality.

In this chapter the charging schedule for a hot water tank is optimised. Computer simu-

lations using actual consumption data compare the real costs of an optimised schedule

and existing charging schedules. Eleven houses are simulated for one month.

102

In chapter 6 the controller for a storage radiator is simulated. This uses a similar optimi-

sation method to that used for the hot water tank, but introduces neural networks as a

means of creating a thermal model from which to evaluate the candidate charging

schedules. A ten week simulation compares the performance of the learning-optimised

strategies to that of existing control options.

Finally in chapter 7, a storage radiator in a real room is controlled using a neural model

predictive controller. Data was recorded for five months and an empirical neural thermal

model of the room created. This model was then used to determine control set points

five hours in advance to track a given room temperature profile, but with no optimisa-

tion. The controller was in continuous operation for 2 weeks.

Optimising ETS devices has been widely studied from various perspectives. In [81] the

approach taken is to centrally control the water heating of blocks of houses, the main

objective being to reduce peak load, a utility benefit. In [82] storage radiators are opti-

mised for cost and comfort but using time-of-use (ToU) tariffs, genetic algorithms and a

resistance-capacitance (RC) building thermal model.

Neural networks have also been used to model building energy consumption [83,84]. In

[85] a recurrent neural network was used to model a crèche with a heated floor. The

objective here was to optimise the start-up time so as to minimise energy consumption.

A particularly ambitious project for using neural networks for domestic control is out-

lined in [86], where a house has been ‘computerised’. Optimising the heating control is

being attempted in simulation [87] but the initial work only used neural networks to

predict occupancy with a RC model used to predict the building response. The planning

horizon is 120 minutes.

Model predictive control using neural network empirical models rather than first princi-

ple models has been attempted in simulation mainly for the chemical process industries

[88,89].

Any controller that is developed will ultimately rely on communication so that it can

receive price and weather information. There will also be the need for half-hourly meter-

103

ing if real-time tariffs are to be introduced. Such technology is already available and

under trial in domestic houses [90]. Actual experiments in the logistics and hardware

requirements of real-time control for thermal storage have been performed as far back as

1989 [91,92].

This thesis is concerned with the development of control technology that is required to

make real-time pricing feasible. An analysis of such tariffs is not given but sources for

reference are [1,2,3,4,93,94,95,96,97]. What has to be considered is that using a predic-

tion of the next day’s demand sets the daily pool price. If this demand has the potential

to adapt to the set price then the initial forecast is wrong. Will this have the desired

effect of flattening the demand profile?

5.2 Model to be Optimised

Fig 5-1 shows the water heating system to be optimised. For each half-hour period there

is a demand (litres) and price (pence/kWh), profiles of which are given at midnight for

the following 24 hours. The criterion to be satisfied is that the demanded water (in the

24 hours following midnight) must be supplied at a set temperature in the cheapest

manner. Two heating elements exist, one in the storage tank (element 1) and one at the

outlet (element 2). The latter is to ensure adequate supply temperature (Trequired) and can

be supplied with warm water from the storage tank via tap 1 or ambient water from the

mains via tap 2. For a 24-hour period of known demand and price, the challenge is to

determine for each half-hour the water source (tap1/tap2) and the state of heating ele-

ment 1 (on/off) that will give the cheapest cost. Heating element 2 is not controlled but

delivers the required amount of energy to maintain the delivered water at Trequired.

104

Tstored

Tambient

Trequired

tap 1

tap 2

element 1

element 2
demand

Fig 5-1 Schematic of the hot water system

For each half-hour two decisions have to be made,

1. If there is demand then shall the source be tap 1 or tap 2?

2. Shall the tank be charged by activating element 1?

There are thus two options for each decision. If water is consumed in all of the 48 peri-

ods during a day then there are 2(48×2) potential solutions, of which the cheapest is

sought, as depicted by Table 5-1.

Table 5-1 The control sequence to be optimised for the water-heating model

time slot 1 time slot 2 :: time slot 48

decision 1

Source?

decision 2

Charge?

decision 1

Source?

decision 2

Charge?

:: decision 1

Source?

decision 2

Charge?

tap 1 ?

or

tap 2 ?

yes ?

or

no ?

tap 1 ?

or

tap 2 ?

yes?

or

no ?

:: tap 1 ?

or

tap 2 ?

yes ?

or

no ?

105

5.3 Simulated Water Heating Model

A simplified computer model of Fig 5-1 was created to determine the fitness of each

candidate solution, which is the total cost over the 24 hour period (see appendix E for an

example of the code used). The process was continuous in that the final tank tempera-

ture (time slot 48) was used as the starting temperature for the following day. The

absolute accuracy of the model compared with a real hot water tank is not vital since the

comparative costs of the existing schedules are being simulated from the same model.

Several assumptions and rules were made to simplify the model,

1) No heat loss from the tank.

2) Complete mixing of water in the tank so it is always at a uniform temperature.

3) All demand is given instantaneously at the start of each half-hour, charging

commencing on the recalculated tank temperature.

4) Charging stops when the tank water reaches the set point (demanded) tempera-

ture (70° C).

5) All water being delivered is topped up to the set point temperature by the direct

acting electrical element (element 2) costing whatever the price is in that specific

half-hour.

6) In the simulations for the existing charging profiles (E7 and E10) all the water

was delivered from the tank via tap 1 and extra heat was added from heating

element 2 if it was below the required temperature.

The E7 charging profile used is 00:00-07:00. The E10 profile is 02:30-07:00, 12:30-

15:00 and 19:00-21:30. Element 1 was set at 2kW. Although heating element 2 is gener-

ally not present in domestic tanks it is required so that a fair comparison can be made

between the charging schedules, as it ensures all schedules deliver water at the required

temperature so that comfort is guaranteed.

106

5.4 Data Used

The data (purchased commercially) used in these simulations originated from 100

houses monitored over the course of a year. Each water outlet was logged every half-an-

hour and from this all hot water outlets were grouped to find the total hot water demand

in each half-hour period. There was no indication in the data of how the water was

actually heated. Eleven houses were randomly chosen for simulations, which were

performed for November 1994, with the corresponding actual pool selling price (PSP)

used to calculate the cost.

Fig 5-2 shows actual hot water consumption and PSP over four days for a particular

house. It can be seen that there are small price peaks just after midnight caused by the

surges due to the existing E7 and E10 tariffs. This is even more pronounced on Saturday

when the early morning price is almost as high as the maximum price for that day. The

difference between weekdays and weekends can also be seen, with the weekend price

generally lower because of reduced overall demand. The high peak on Thursday occurs

at evening meal time and is a result of increased domestic heating, lighting and cooking

electricity consumption. The water consumption tends to be concentrated between 8am

and 10am that can be a period of high price. The consumption pattern on Sunday is

spread throughout the day, highlighting how usage is related to lifestyle.

0

2

4

6

8

10

12

14

16

Thu Fri Sat Sun

pool price (pence/kWh)
hot water (litres/10)

Fig 5-2 Actual pool price and hot water consumption from a random house for four days in

November 1994

107

Fig 5-3 shows the average daily consumption profile for the same house throughout

November and the corresponding average price. The morning water consumption is

emphasised (hours 6-10), as are the early evening and midnight peaks in pool price.

These two figures show that although on the average things look predictable, on a day-

to-day level there is much variation and potential for customised control strategies.

5.5 Optimisation Procedure

The optimisation technique used was based on random mutation hill climbing, as de-

scribed in section 4.5.3.3 on page 86. As well as proving superior in performance to

GAs it is also more desirable from a controller memory standpoint as only two solutions

have to be stored, as opposed to many if GAs were used.

In the original version of RMHC only one bit change is allowed between successive

potential solutions, which means that it is unlikely to escape from any local minima.

Three bit changes were introduced to overcome this potential problem. Introducing more

than one bit change also has the effect of speeding up the process. This is because if

there is no demand in any particular half-hour then the choice of tap 1 or tap 2 is irrele-

0 2 4 6 8 10 12 14 16 18 20 22 24
0
2
4
6
8

10
12
14
16
18
20

Hour of Day

average pool price (pence/kWh)

average hot water consumption (litres)

Fig 5-3 The November daily averaged price and consumption for the same house

108

vant and a bit flip will make no change to the solution. Pre-processing the string to

eliminate redundant bits would reduce the search space but require more processing

power.

In any stochastic (i.e. having an element of chance) search procedure, there is no guaran-

tee that the global optimum solution will be found. Once a solution had been given

adequate time to reach a steady value, it was found more beneficial to restart the search

as opposed to continue searching from the current position. In the optimisation the

search was repeated three times with the best overall solution used. Each search con-

sisted of 2,000 evaluations, with the whole process taking about 7 seconds on a P133 to

optimise all 30 days.

The hot water tank is an example of a system where one change can have a profound

effect on the outcome. If the tank is at its maximum temperature then the thermostat in

the model will ensure that no more heating is allowed, regardless of the control signal to

the element. For instance, if there is no demand all control signals for heating the tank

would be ignored once it was at its maximum temperature. A change early in the day

could result in a previously ignored signal becoming active. This makes the search more

random rather than gradient based. To overcome this, all signals indicating that the tank

should be charged were reversed if the tank was already at its maximum temperature.

The initial starting point can affect the search procedure, especially if there is low de-

mand throughout the day. To capture this possibility the initial guess is ‘do not charge

the tank at all’, for which the associated cost will be that of using direct acting heating to

satisfy the requirement. This is often the cheapest solution if there is low demand as it

saves heating the tank and having excess hot water at the end of the day.

5.6 Profiling Usage Patterns

In the optimisation process the actual half-hourly consumption data was used. In reality,

the controller will have to use estimated values on which to base the optimisation. This

109

could be done via a keypad, with the occupants entering times at which they are likely to

take showers, baths or use washing machines. An alternative method is to use past

consumption patterns to make educated guesses as to a likely profile for the following

day.

If consumption is to be predicted based on previous occurrences, it has to be assumed

that there is some cyclical pattern involved. This is likely to be a predominant daily

cycle with an underlying weekly cycle, which life generally revolves around.

A simple method of predicting consumption is to take an average value of volumes that

occurred in the same half-hour of previous weeks. The method actually employed was to

use a neural network to create a curve fit with daily and weekly components. This was

achieved by having inputs representing hour-of-the-day and day-of-the-week, appropri-

ately coded as sines and cosines in order to achieve the cyclic pattern. Each unique

combination of inputs thus had four output values for the four weeks of data available,

an ill-posed problem. This has the effect of basically averaging the consumption but

fitting a generally smooth curve through the data, achieved by limiting the number of

hidden neurons. 15 hidden neurons were used in this case.

The resultant profiles were used to optimise the heating system and the costs calculated

by then using the actual consumption patterns. Because only four weeks of data were

used the actual consumption figures for any half-hour contribute to the predicted profile.

A more realistic test would be to use a running profile and use it for the week ahead,

with the prediction day’s data not being involved in creating the profile.

5.7 Results

Consumption data from 11 houses for November 1994 was simulated for boiler sizes of

10 to 1000 litres. Costs for E7, E10 and direct acting only heating strategies were also

recorded. The results are shown Fig 5-4 to Fig 5-14. The actual demands in b) are trun-

cated at 20 litres and the x-axis in a) starts at 10 litres.

110

5

6

7

8

9

10

11

12

13

14

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)
Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-4 HOUSE 1 mean daily demand = 157 litres

111

1

2

3

4

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)

Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-5 HOUSE 2 mean daily demand = 36 litres

112

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)
Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(lit

re
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-6 HOUSE 3 mean daily demand = 74 litres

113

6

7

8

9

10

11

12

13

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)
Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(lit

re
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-7 HOUSE 4 mean daily demand = 186 litres

114

4

5

6

7

8

9

10

11

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)

Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-8 HOUSE 5 mean daily demand = 150 litres

115

3

4

5

6

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)

Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-9 HOUSE 6 mean daily demand = 71 litres

116

2

3

4

5

6

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)

Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-10 HOUSE 7 mean daily demand = 55 litres

117

3

4

5

6

7

8

9

10

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)
Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-11 HOUSE 8 mean daily demand = 96 litres

118

4

5

6

7

8

9

10

11

12

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)
Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-12 HOUSE 9 mean daily demand = 86 litres

119

2

3

4

5

6

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)
Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-13 HOUSE 10 mean daily demand = 57 litres

120

20

22

24

26

28

30

32

34

36

38

100 200 300 400 500 600 700 800 900 1000

C
os

t (
£)

Tank size (litres)

E7

E10

Direct

Opt (actual)

Opt (profile)

a) Costs as a function of tank size

5

10

15

20

Sat Sun Mon Tue Wed Thu Fri

P
ric

e
(p

/k
W

h)
 a

nd
 D

em
an

d
(li

tre
s)

b) The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid)

Fig 5-14 HOUSE 11 mean daily demand = 395 litres

121

5.8 Discussion of Results

5.8.1 Does Water Storage Save Money ?

If storage tanks did not exist then the water must be heated on demand at the cost of the

current pool price. The cost of this option is shown in Fig 5-4 a) to Fig 5-14 a) by the

straight line labelled ‘direct’.

In all cases the E7 and the optimised charging schedules are cheaper or as cheap as

direct acting heating. E10 is generally cheaper but depends on the tank size and demand

levels. House 2 shows that for a very low demand excessive charging with large tanks is

wasteful.

5.8.2 How did the Profiling Perform ?

Two methods of optimisation were performed. The first was to use a predicted

‘Opt(profile)’ daily demand and the second was to use the actual ‘Opt(actual)’ demand.

After the optimised schedules were derived the costs were then calculated based on the

actual demand.

Fig 5-4 a) to Fig 5-14 a) show that using the profiled demand compares very favourably

to using the actual demand. Generally as the tanks get larger the actual demand is re-

quired to give a cheaper solution. This is because the more continuous nature of the

profiled patterns will result in the tanks being over charged at times of low demand.

This cannot be avoided as there is more storage capacity and hence increased energy

consumption.

In the case of house 6 the profiled optimisation costs were cheaper than the actual opti-

misation costs for tank sizes of 200 to 400 litres. This means that the optimisation

procedure did not perform satisfactorily when using the real data. By looking at the

demand profile for week 1 (Fig 5-9 b) it can be seen that water is only consumed in

about 5 half hours of the day, immediately making 44% of the search space redundant.

By using the profiled consumption there is predicted demand in most half-hours, which

122

assists the search procedure. For instances similar to this the search space could be

severely reduced by eliminating the redundant bits.

The individual profiles in Fig 5-4 b) to Fig 5-14 b) show a wide variation from house to

house and there is no ‘typical’ profile. The profiles are similar to a smoothed time-

averaged demand, and in all cases the total profiled demand was within 5% of the actual

total demand.

It might be suggested that ‘group’ profiles could be created for specific users, which

would alleviate the need to measure actual consumption. The groups might be related to

the number of residents, but as Fig 5-15 shows there is no obvious relationship between

the number of residents and average daily consumption.

0

50

100

150

200

250

300

350

400

Number of residents

1
(11 cases)

2
(25 cases)

3
(17 cases)

4
(22 cases)

A
ve

ra
ge

 d
ai

ly
 h

ot
 w

at
er

 c
on

su
m

pt
io

n
in

 A
ug

us
t

Fig 5-15 Mean daily hot water consumption related to the number of residents
5.8.3 How Much Money could be Saved?

Fig 5-16 shows the percentage cost savings over E7 for the 11 houses. The data is from

the optimisation results using the profiled consumption patterns, which is close to what

123

could be achieved in reality. For most houses savings of between 20-40% are possible

for tank sizes between 50 and 250 litres. If it is assumed hot water accounts for 40%

[81,90] of the domestic electricity bill then this relates to savings in the range 8-16%.

Existing domestic tank capacities are within the range 100-250 litres.

-60

-40

-20

0

20

40

60

50 100 150 200 250 300 350 400

Tank capacity (litres)

%
 c

os
t i

m
pr

ov
em

en
t o

f o
pt

im
is

ed
 s

ch
ed

ul
e

on
 E

7

house 2

Fig 5-16 For tank capacities between 50-250 litres the optimised schedules show consistent savings
between 20-40% compared with E7.

5.8.4 Why is the Optimised Schedule Sometimes Worse?

For tank capacities over 300 litres the relative performance of the optimised schedules

degrade compared with E7. For house 2, which has very low consumption, this decline

starts at 150 litres (Fig 5-16). E7 is outperforming the optimised schedule, so why did

the optimiser not arrive at a schedule similar to E7?

124

The reason for this is the balance between tank size, consumption and the optimisation

process. In the system used the optimisation window was 24 hours and the schedule was

calculated once per day. With larger tanks better performance will be achieved by in-

creasing the optimisation window. A tank of 600 litres can typically hold enough hot

water for three days consumption. An optimal 24 hour schedule will probably not in-

volve charging the tank as it can be wasteful because of excess heating that is not

required within that 24 hour period. Similarly for low demand a shorter window or

continuous optimisation would result in improved performance.

Fig 5-17 shows the relationship between the mean daily water consumption and the tank

size resulting in the cheapest cost for the E7 and optimised schedules. The optimised

schedules are a significant improvement and suggest a range within currently available

tank sizes.

It is interesting to note that the optimum E7 tank size has 5 times the capacity of the

average daily requirement. By keeping a large volume of hot water the daily temperature

reduction is small, so less input will be required by element 2. Introducing time depend-

ent heat losses into the model would give a more realistic situation. In reality the system

behaviour is not like that of the model, as water is not always delivered at the required

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

Mean daily consumption (litres)

O
pt

im
um

 ta
nk

 c
ap

ac
ity

 (l
itr

es
)

Optimised using profile

E7

Fig 5-17 Optimum tank sizes

125

temperature.

5.8.5 How is the Optimisation Working

Fig 5-18 compares an optimised solution with the E7 situation, showing how the tank

temperatures and cumulative daily costs vary for a case with a 200-litre tank.

It can be seen that for the E7 schedule the tank is charged to full capacity starting at

midnight. The tank does not require a full 7 hours charge, typically only 2 or 3 hours are

required before it reaches the set point temperature. Examination reveals that the differ-

ence in cost occurs in the way the tank is charged over this night time period. The

optimised solution delays charging in order to miss the peak prices that occur after

midnight. Ironically these prices are a result of the night time tariffs being introduced, as

there is a surge in demand at midnight when appliances are switched on. This is seen

consistently for all three days. Days 1 and 2 show that the relatively low demand enables

a reduced temperature in the water tank. Rather than heat a full tank of water it is more

economical to part heat it and then just top up the demand to the required temperature

with direct heating. On day 3 the optimised schedule is roughly half the cost of the E7

schedule but has warmer water in the tank at the end of the day even though it started

0

0

0

0 7 12 0 7 12 0 7 12 0

Hour of Day

tank water
temperature

daily
cost

price

demand
and

E7

optimised

E7
optimised

Fig 5-18 Comparison of an E7 and optimised solution over 3 days

126

colder.

5.8.6 Local Minima

An example of how a search can become trapped in a sub-optimal solution is demon-

strated by Fig 5-19. Two charging schedules are shown (schedule 1 and 2) with their

resultant cost and tank temperature profiles. The only difference in the two solutions is

the hours at which the tank is charged, schedule 1 being charged in time slots 8,9,10 and

11 while schedule 2 is charged in slots 1,7,8 and 9. The tap source was identical for both

solutions. When this particular day was optimised in isolation these two solutions were

constantly found, but schedule 2 would never be reduced to schedule 1. In order to

achieve schedule 1 the search would have to be restarted.

What can be seen is that for any improvement more than one bit flip in the charging

schedule is required. Four charging periods appear to be required but one bit flip will

result in 3 or 5 charging periods. In order to keep four periods but redistribute the times,

two bit flips are required, one to destroy and one to create. To jump directly from sched-

ule 2 to 1 requires 4 bit flips to simultaneously flip periods 1,7,10 and 11, which is why

it never occurred as only 3 flips were allowed. With four bit flips allowed the chance of

jumping from schedule 2 to 1 is less than 1 in over 80 million, assuming the string is not

reduced in length from 96 bits.

No intermediate solution is possible because of the demand in time slot 4. This illus-

trates the benefit in frequently restarting the stochastic search as opposed to continuing

the search from a local minimum and also having the possibility of more than one bit

flip between solutions.

What is interesting in these optimised schedules is that although both have a full tank of

hot water available for the demand in time slot 15, cold water from tap 2 is selected and

the hot water saved for the higher level of demand in slot 16. Once the tank is almost

emptied (due to the demand at time slot 16) it is not recharged because there are no

further cheap periods of which to take advantage.

127

5.9 Chapter Summary

The simulations have demonstrated the potential for large improvement in water heating

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

5 ° C

70 ° C Tank temperatures

Cumulative costs

Schedule 1
(total cost=30.93p)

Schedule 2
(total cost=31.48p)

Source and Demand
(identical for both
schedules)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

price

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

price

Half hour of day

tank
charged

tank
charged

demand

tap 1tap 2

0p

31.48p

schedule 1

schedule 2

schedule 1

schedule 2

Fig 5-19 Global and local minimum solutions. The x-axes are relative linear values for visual comparison
only.

128

strategies based on real consumption data and prices. Saving of the order of 40% were

not untypical, which would reduce the cost of electricity supply to domestic customers

by 16%, based on water heating being 40% of the total consumption [81,90]. There are

no technological barriers to implementing such a control scheme.

129

66
Storage Radiator Controller Simulation

6.1 What are Storage Radiators ?

A storage radiator (also commonly known as a storage heater) is essentially a brick that

is electrically heated during the night and dissipates the stored heat gradually throughout

the day. The idea is that the thermal storage capacity of the bricks is utilised to shift

electrical heating load in order to help increase the load factor.

Fig 6-1 shows a cross section through a typical radiator. An electrical heating element is

encased within the bricks and is used to heat up this ‘core’. Surrounding the core is

thermal insulation that helps retain the heat. The core contains channels through which

air circulates by natural convection, heating up the room.

130

There are two manually operated controllers on the basic radiator. The first controls the

energy input and adjusts the thermostat regulating the core maximum temperature. The

second controls the heat output and adjusts the damper position, regulating the amount

of air that is allowed to circulate through the core. The radiators (and water heaters) are

hard-wired to a separate electrical circuit, which is activated from the electricity meter

by a time clock or radio tele-switch.

In order to improve their controllability, fan storage radiators were developed. These

have a high level of insulation to minimise heat loss, and an electric fan that can be

activated to force air through the core when heat is required. The air gap in the core is

designed so that this forced convection is required to extract the heat. This is done by

having an inverted ‘u’ shaped air passage.

storage
bricks

heating
elements

insulation

damper

air inlet

air outlet

Fig 6-1 A cross section through a basic storage radiator

131

6.2 Room Thermal Model

In order to simulate the heating controller, a thermal model of a room is required which

the neural network has to attempt to emulate. The neural model is then used to evaluate

heating strategies, of which an optimum is sought. The thermal model is derived from

first principles and attempts to emulate the response of a real system.

An explicit finite difference method was used to create the thermal model. This is a

nodal approach that calculates temperatures at nodes within building elements (walls,

core etc.) at discrete time intervals, which was every 5 seconds in this particular simula-

tion. Heat transfer within the elements is by conduction, with convection taking place at

the element surfaces. Each wall can be given different thermal properties and exterior air

temperatures. Wind speed and outside air temperature were the only weather variables

required, as solar gains were ignored. Every 5 seconds the net energy input into the

room is calculated and the room air temperature updated. Appendix F gives more details

of how the storage radiator was simulated and code for a room with a storage fan heater.

The simulated room had a 2kW storage radiator and a 1kW direct acting heater. The

direct acting heater was only allowed to operate at times when there was a required

internal temperature. The storage heater had a thermostat that stopped charging if the

core temperature was above 700 °C. The room dimensions were 4 × 5 × 2.5 metres high,

with 50% of the wall area exterior, 10% of this glazed. There were 0.1 air changes per

hour with the outside air. Data on the room conditions was recorded at the end of every

half-hour.

The exact details of the room configuration are not important and do not have to reflect

any ‘typical’ type of room that the heater will be placed in. What is being investigated is

if the neural network can learn the behaviour of the given room , whatever its properties.

132

6.3 Neural Network Emulator

The purpose of the neural network is to generate an empirical model that will emulate

the behaviour of the theoretical model. The objective is to be able to predict what the

room temperature will be in half-an-hour, given the current conditions and the heat

inputs in that half-hour. The heat inputs can then be optimised so that the required tem-

perature is satisfied in the cheapest manner.

The neural model was created by reducing the heat transfer process into three distinct

parts. Fig 6-2 is a schematic of the process and Fig 6-3 the neural emulator created.

Network 1 predicts the next inner core temperature (TCin+1) given the current core

condition (TCin, TCout) and the storage charge occurring in that time slot

(SHcharge+1).

Network 2 predicts the next outer core temperature given current core conditions, the

room temperature and the previously predicted next inner core temperature.

Network 3 predicts the next room temperature given the current and predicted core

states, the direct acting input (DAcharge+1) and historical weather temperatures for the

previous 12 hours.

Networks 1 and 2 had two hidden neurons and network 3 had three. Hyperbolic tangent

(tanh) and linear neurons were used in the hidden and output layers respectively, and all

data scaled to lie in the range [–1,1]. Any network output outside this range was rounded

to –1 or 1, effectively using an activation function known as softmax.

The time step of the neural model is half-an-hour. Starting at midnight, two charge

values for the storage and the direct acting heaters are fed into the emulator and the

thermal changes predicted. The time step is advanced and the predicted state is fed-back

to become the current state. This process is repeated for all 48 time steps so the emulator

can predict the room temperature response to the given 24 hour charging schedule, but

based on a single model predicting half-an-hour ahead.

133

SHcharge

TCin

TCout

core

Toutside

Troom

DAcharge

Fig 6-2 Schematic of the heat transfer boundaries in the model

Troom+1

Toutside-23

Toutside

 :

TCin

TCin+1

TCout
TCout+1

Troom

DAcharge+1

Troom

TCin
TCin+1
TCout

TCin

TCout

SHcharge+1

Z-1

Z-1

Z-1

Network 3Network 1 Network 2

Fig 6-3 The neural emulation of the theoretical model for predicting the room temperature in half-an-
hour, given the storage and direct acting energy inputs

TCout = core outer surface temperature TCin = core inner surface temperature
Troom = room temperature Toutside = outside temperature
SHcharge = energy to storage heater DAcharge =energy to room by direct acting heater

134

In the neural emulator, outside weather temperatures are required for the 12 hours previ-

ous to the current time slot under consideration. In the simulations retrospective actual

temperatures are used, although in reality these would have to also be predicted.

6.4 Optimisation Procedure

The neural emulator was used to evaluate proposed daily schedules of half-hourly

charges for the storage and direct acting heaters. A schedule consists of a string of 48 or

96 numbers, depending on the optimisation used. The evaluation was equated in terms

of cost, calculated by using the pool price.

Occupancy profiles were created giving the hours at which set point temperatures are

required. Both the occupancy times and set point temperature values were varied so as

to create a diverse range of conditions for the neural network to learn. If no set point was

given (room unoccupied) then the temperature could behave in any manner, but a condi-

tion was given that the direct acting heater could not be on in these periods.

To compare the neural controller performance with existing heating strategies on a like-

for-like basis, it was a requirement that the schedules must attempt to satisfy the room

temperature set points given by the daily profile. This was the reason for including the

direct acting heater, which operates only when there is occupancy in order to make up

any shortfall in temperature.

In each half-hour there is a storage heater electrical charge and a direct acting electrical

charge. In the theoretical model these are either 2 kW (storage) or 1 kW (direct). Be-

cause the thermostats can operate every 5 seconds, the recorded value at the end of each

half-hour was equivalent to a continuous charging at a fixed percentage of full power.

The load inputs to the neural emulator are thus real numbers, equivalent to the percent-

age of full power that should be utilised.

In order to implement this in the optimisation procedure, the string representation has to

be changed. The control actions, previously represented by a bit at a particular location

135

on a string, are no longer binary choices. Each action can now be any real number be-

tween 0 and 100, so the string could be real valued with a mutation being the random

generation of a new real number as opposed to a bit flip. From the experience gained in

chapter 5, a random number of mutations (between 3 and 10) were allowed between

each evaluation.

The primary optimisation task is to track the given temperature profile. The ability to

give the heaters variable charge levels (although constant in each half-hour period)

means that there is an infinite number of solutions to this problem. Because heat can be

stored and the price varies every half-hour, each solution will have a different associated

cost, the one giving the lowest being sought. This is a difficult optimisation problem and

attempting to find the global solution would be a futile task. What is required is a

method that can give a reasonable solution.

To reduce the search space the storage heater loads were limited to 5 discrete values

equivalent to 0, 0.5, 1, 1.5 and 2 kW. This is more realistic to how a real controller

would operate by activating a set of four 0.5kW elements. It also has the advantage over

using continuous real numbers in that a random real mutation is unlikely to set the

charge to zero, or ‘off’, whereas there is a 1 in 5 chance with the discrete coding.

As there is no control of the storage radiator output, the optimisation is simpler than that

of the hot water system in chapter 5 as no decision has to be made as to the source of the

heat. If a storage fan heater were simulated then the decision to switch the fan on would

be equivalent to taking hot water from the tank.

Because the set point temperature has to be satisfied then only the storage heater charge

needs to be optimised. If the storage schedule does not meet the required set point in any

particular time slot, the direct acting heater is activated by incrementing the emulator

load from 0 to 1kW until it is predicted that the set point will be achieved. A storage

schedule will thus automatically have an associated direct acting cost, giving the total

cost for that solution.

136

By optimising for minimum cost, a likely solution is never to charge the core. To pre-

vent this scenario, a high penalty cost was added to the total cost if there was under

heating at times when set points were required. Because of this it was necessary for the

initial starting schedule to include a high degree of charging. If the initial solution was

not to charge then there would be a high penalty cost due to the under heating. If random

mutations did not instantly eliminate under heating in at least one time slot, then the

same penalty cost would still be incurred as well as an added cost due to the charging,

thus increasing the overall cost. The search procedure would thus never advance.

6.5 Simulation Procedure

Two simulations were performed in the optimisation. One was for a situation where the

thermostat switches on the radiator core and direct acting heater were operational when

the optimised storage schedule was passed through the building model (NNopt). The

model then automatically activates the direct acting heater when required, giving a

similar control scheme to existing strategies.

The second simulation (NN) was performed where both direct acting and storage

charges were simultaneously optimised (using a real valued string of length 96) to

maximise the comfort satisfaction. The cost function being minimised was thus the total

absolute error, where the error is the difference between the required set point and the

model prediction. The optimised solution was fine tuned by adjusting the direct acting

charge so that the set points were satisfied, and the schedule then passed through the

building model with no thermostat switches. This was performed to provide a yardstick

from which the effectiveness of the cost optimisation could be assessed and to test the

accuracy of the emulator predictions.

E7, E10 and direct acting only performances were also evaluated. In these cases the

control rule was given that the direct acting heater would switch on if at any time during

the occupancy periods the room temperature was below the set point, and switch off

again once the set point was exceeded. During non-occupancy periods the direct acting

137

heater was switched off. For the simulation with only a direct acting heater, the element

size was increased to 2 kW to prevent under heating.

The controller was simulated for 72 days starting from 1st January using weather data

from Kew. The neural networks need some initial data on which to train, so 3 days on an

E7 charging profile were simulated and used to create this initial database.

Fig 6-4 is a representation of how the simulation proceeded. From the database of actual

past behaviour, training patterns were created and the three networks trained. The net-

works were then were used as an emulator to evaluate candidate charging schedules,

which had been suggested by the optimisation process. Once a solution had been ob-

tained, the charge levels were then applied to the theoretical model and this ‘actual’

behaviour recorded and added to the database. The process was then repeated for the

next day.

In re-training the networks, the previous weights were used and given 25 epochs training

on the patterns in the updated database. The optimisation was allowed to proceed for

800 function evaluations, which took considerably longer than the network training,

train
neural
networks

optimise
schedule
using
neural
emulator

pass
schedule
through
theoretical
model

update
database

24hr weather
profile

24 hr room profile

predicted behaviour

actual behaviour

24 hr pool prices

Fig 6-4 A schematic of how the simulations were performed

138

although still only in the order of 10’s of seconds.

6.6 Results

6.6.1 Did the Controller Work ?

Without analysing the results too deeply, did the controller generally achieve a satisfac-

tory performance in terms of temperature control – or basically, ‘did it work? The

results of simulation NN, where there is no thermostatic control, is shown in Fig 6-5.

The differences between the predicted and achieved temperatures are shown chronologi-

cally over the 72 days.

It can be seen that eventually, after some initially large errors, the achieved temperatures

consistently fall well within 1 °C of the predictions. For building thermal control this is

within acceptable limits and it can thus be stated that in simulation the model predictive

controller does work.

6.6.2 Why do the Large Initial Errors Occur ?

From Fig 6-5 it is observed that early in the simulation there are days when the errors

are relatively large, indicated by A, B and C. A close examination of the data, shown in

-3

-2

-1

0

1

2

3

4

N
eu

ra
l M

od
el

 E
rr

or
 (

º C
)

1 72Simulation Day

A C

B

Fig 6-5 Half-hourly errors over the 72 day simulation. The error is the difference

between the emulated and achieved temperatures.

139

Fig 6-6, reveals why these errors occur.

Large errors occur on day A, the first day that the controller is used. The three previous

day’s data were used for training, which originated from an E7 charging schedule. Dur-

ing these three days, the core temperature never falls below a certain value and the data

would be scaled between these current limits of experience. The emulator core tempera-

ture will never fall below its previous minimum whatever the charge, due to the fact that

all predictions fed back have to lie within the scaled range [-1,1]. There can thus be a

solution with no storage charge but a heat input equivalent to the core being at the pre-

vious minimum. This is what has happened on day A, with the actual response of the

core temperature to no charging falling below what the network predicted. As a result

the room is under heated.

The same effect is repeated for day C. There is no occupancy during this day so there

will be no storage charge. The core is already at the minimum temperature previously

experienced at the start of this day, which the emulator guarantees will not to be sur-

passed. Also at the start of this day the room temperature is close to its lowest ever value

and the emulator again has restricted the predicted temperatures to lie within current

experience. This is why the predicted temperature for day C is almost constant at its

previous minimum. Once the new data has been added to the database the limits change,

as can be seen for the following day.

For day B the direct acting charge is at a higher level than had previously occurred. Any

charge level above that previously experienced will not have the corresponding increase

in effect. This is due to the saturation of the tanh activation function that limits extrapo-

lation. When the optimised charge is then applied, overheating occurs. This shows an

inefficiency of the optimisation process, as the direct acting input could have been re-

duced giving the same comfort for less cost. The fine tuning did not correct this as it

only adjusted the direct acting heat input upwards.

140

The initially large errors occur due to the constraints placed on the emulator to prevent it

from extrapolating (by using the softmax output function). If these constraints had not

been set (by having a linear output function) then similar results would have been ex-

pected if the model had used the full range of the tanh activation function. This would

ensure that any fed-back input outside current experience would be in the saturated

regions and thus automatically set at either –1 or 1.

A B C

outside
temperature

core
temperature

room
temperature
(actual and
predicted)

kW direct

error

3 days E7

1 17
Simulation Day

Fig 6-6 Investigating why the early errors occur

141

The neural network learns the room characteristics within its current limits of experi-

ence almost immediately. Errors occur when these limits are exceeded but once the full

range of data has been experienced the performance is satisfactory.

6.6.3 Performance of the 1-step-ahead Predictor as a Recursive
48-step-ahead Predictor

The neural emulator was created in such a way so that there were predictions used

within the current time step to estimate the room temperature – or a prediction based on

predictions. These predictions were then fed-back to be used as inputs for a further 47

time steps through the day. This deliberately created ‘worst case scenario’ has the poten-

tial for multiple error accumulation and therefore should rigorously test the accuracy of

the emulator models.

Fig 6-7 shows how the prediction errors accumulate throughout the day. The initial one

step ahead error for hour 0.5, where the exact previous conditions are known, is around

0.07 °C. This immediately doubles for the next time step but gradually levels off at 0.4

°C around time step 20 (hour 10). The sharp jump at hour 7 is due to the occupancy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.5 2 4 6 8 10 12 14 16 18 20 22 24

Hour of Day

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
 º

C
)

Fig 6-7 The absolute error of the emulator for each time step averaged over the 72

days

142

patterns consistently requiring a set point temperature for the start of the day. This will

result in direct acting heaters being switched on, giving a large change in room tempera-

ture and the potential for larger errors.

Averaged over time it can be seen that there is a gradual deterioration in performance up

to hour 10 and then a relatively constant error for the remainder of the day. It could

easily be assumed from these results that the errors of each individual day will follow a

similar pattern, with errors gradually accumulating as the fed back predictions become

gradually worse.

A closer inspection of the actual daily errors shown in Fig 6-6 and in more detail for a

different period in Fig 6-8 reveals this is not the case. For day 50 (Fig 6-8) when there is

no occupancy and thus no heating, there is a general drift in the error up to a point, but

even here it starts to improve in the later stages of the day.

6.6.4 Comparison with other Heating Strategies

To assess the relative performance of the model predictive controller the simulations

were repeated for E7, E10 and a direct acting (DA) only charging schedule. The results

are shown in Table 6-1.

The comfort optimised (NN) neuro-controller is almost twice as expensive as all the

other heating strategies, although its actual energy consumption is comparable to E7 and

E10. This is unsurprising, as its only objective is to satisfy the demand without any cost

considerations. This demonstrates how electric heating can be very expensive if not

efficiently regulated.

143

0.0

0.2

0.4

0.6

0.8

1.0

200

300

400

500

600

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Simulation Day

44 52 5351504947 4845 46

C
ore Tem

perature (°C
)

D
ire

ct
 A

ct
in

g
H

ea
te

r
ch

ar
ge

 le
ve

l (
kW

)
E

m
ul

at
or

 E
rr

or
 (°

C
)

Fig 6-8 The actual daily errors do not follow the time averaged pattern of Fig 6-7

144

The cost optimised solution (NNopt) is 5.5% cheaper than E7 and uses 27% less elec-

tricity. This imbalance in the cost savings is in part due to the fact that there were some

high pool prices. The peak pool price was 70p/kWh whereas the mean price of the

cheapest 90% of half-hours was only 1.5p/kWh. For NNopt, 34% of the direct acting

cost was accumulated in only 4% of the time that the direct acting heater was opera-

tional.

The improvement brought by the controller is in its ability to accurately regulate the

temperature. In E7 there is excessive overheating of effectively 2.29 °C for a continuous

period of 10 days, with E10 being worse. The neuro-controller has weather information

for the day ahead so it can set the loads at a level so that overheating will not occur.

Overheating does occur for 21 slots out of a possible 1,383, due to set points of 16 °C

being given, the cooling rate being too low for the temperature to fall enough in the time

specified.

COST (£)

Storage

Direct

TOTAL

CONSUMPT

Storage

Direct

TOTAL

COMFORT

Overheat (>0

Occurrences

Average (°C)

Underheat (>

Occurrences

Average (°C)

Table 6-1 The relative performances of 5 heating strategies

NN NNopt E7 E10 DA only

30.99 6.70 12.17 17.16 ----

4.55 9.37 4.83 3.01 21.86

35.54 16.07 17.00 20.17 21.86

ION (kWh)

986 429 959 1097 ---

104 341 104 62 622

1090 770 1063 1159 622

.5 °C)

404 21 476 696 ---

 1.44 2.44 2.29 2.62 ---

0.5 °C)

47 --- --- --- ---

 -0.73 --- --- --- ---

145

The most energy efficient solution is direct acting only, as energy is not wasted heating

periods that do not require a set point. The neuro-optimised solution (NNopt) is 23%

less efficient than direct acting but 26% cheaper.

6.7 Emulator Improvements

The neural emulator created was a 1-step-ahead predictor that used its own predictions

to extrapolate to 48 time steps ahead. At each time step the only information it receives

that is not predicted directly from the starting conditions is the outside temperature, for

which actual values are used. By feeding back the predictions to advance a time step

there is thus no new information being introduced apart from potential errors.

A better approach would be to have 48 networks, each trained to predict the temperature

for a given time step ahead. The inputs would be the initial starting conditions and the

weather and loads that had occurred up to that time step. Intermediate temperatures are

thus not introduced as they do not need to be known for the current prediction.

By taking the average temperature from a population of models for each time step (see

section 3.10 on page 61), the accuracy would be further improved.

The potential effect on the error of ‘wrong’ temperature predictions needs to be quanti-

fied. It is hypothesised that this will only be important when there are sudden

unpredicted cold fronts and the model underestimates the heating requirement.

6.8 Chapter Summary

The simulations performed in this chapter have demonstrated that theoretically neural

networks could work as model predictive controllers of domestic storage heating. The

main benefit over existing systems is anticipating when overheating will occur and

reducing the charge appropriately.

146

147

Table 4-1 Representations of the base 10 numbers 0 and 255 in different bases 77
Table 4-2 An example of how the fitness of the solutions to the Chinese Hat problem are evaluated for a
string length of 8. Each bit value in a solution is multiplied by the value in the same position in the
scoring template and the total fitness is the square of the sum of all the bit scores. Each bit can have a
value of 1 or –1 80
Table 4-3 The average number of function evaluations over 1000 trials for the Chinese Hat problem
with a string length of 50 87
Table 4-4 The Royal Road (R1) fitness function. A bit string of length 64 contains 8 short schema that
are the building blocks of the optimal schema. The wildcard ‘*’ represents a 0 or 1 (or ‘do not care’).
The fitness of each candidate solution increases with the number of these building blocks present. 89
Table 4-5 The theoretical and experimental (averaged over 1000 trials) number of evaluations to
discover each subsequent schema for R1 using RMHC. The total theoretical evaluations = 6,549,
experimental = 6,542 and Mitchell et al. = 6,179. 94
Table 5-1 The control sequence to be optimised for the water-heating model 104

Fig 4-1 An example of how the required solution evolves using the selection, crossover and mutation
operators 76
Fig 4-2 The effects of Pm and the selection procedure 81
Fig 4-3 Elitism 81
Fig 4-4 Population size 82
Fig 4-5 Population size 82
Fig 4-6 Function evaluations 83
Fig 4-7 The effect of crossover and mutation probabilities for a population size of 6 84
Fig 4-8 The effect of crossover and mutation probabilities for a population size of 30 84
Fig 4-9 The effect of mutation probability and string length for Multiple Random Mutation Hill
Climbing optimisation 88
Fig 4-10 The effect of the mutation probability for four crossover probabilities (0,0.1,0.7,1) on the
Royal Roads (R1) landscape. Each point is the average over 20 tests with a population size of 128.
Mitchell et al. used a mutation probability of 0.005 (0.33 in 64) and crossover probability of 0.7 that
gave a mean of 61,334 function evaluations to convergence over 200 tests. 90
Fig 4-11 The relationship between the mutation probability and the number of contestants in
tournament selection (2,3,4, and 5). The crossover probability is 0 and the population size is 128. The
mean of 20 trials was recorded. 91
Fig 4-12 The effect of the mutation probability and the population size (10,40,128). In these cases the Pc
= 0 and the number of candidate parents is 5. 92
Fig 4-13 The effect of the mutation probability on MRMHC, averaged over 200 tests. The optimum is
(1.2/64). 92
Fig 4-14 The effect of the mutation rate on the minimum population fitness 94
Fig 4-15 The effect of the mutation rate on the average population fitness 95
Fig 4-16 The effect of the mutation rate on the maximum population fitness 95
Fig 4-17 The number of converged trials at each generation for the three mutation rates 96
Fig 4-18 The effect of Pc on the minimum fitness 96
Fig 4-19 The effect of Pc on the average fitness 97
Fig 4-20 The effect of Pc on the maximum fitness 97
Fig 4-21 The number of converged trials at each generation for the three crossover probabilities 98
Fig 5-1 Schematic of the hot water system 104
Fig 5-2 Actual pool price and hot water consumption from a random house for four days in November
1994 106
Fig 5-3 The November daily averaged price and consumption for the same house 107
Fig 5-4 HOUSE 1 mean daily demand = 157 litres 110
Fig 5-5 HOUSE 2 mean daily demand = 36 litres 111
Fig 5-6 HOUSE 3 mean daily demand = 74 litres 112
Fig 5-7 HOUSE 4 mean daily demand = 186 litres 113
Fig 5-8 HOUSE 5 mean daily demand = 150 litres 114

148

Fig 5-9 HOUSE 6 mean daily demand = 71 litres 115
Fig 5-10 HOUSE 7 mean daily demand = 55 litres 116
Fig 5-11 HOUSE 8 mean daily demand = 96 litres 117
Fig 5-12 HOUSE 9 mean daily demand = 86 litres 118
Fig 5-13 HOUSE 10 mean daily demand = 57 litres 119
Fig 5-14 HOUSE 11 mean daily demand = 395 litres 120
Fig 5-15 Mean daily hot water consumption related to the number of residents 122
Fig 5-16 For tank capacities between 50-250 litres the optimised schedules show consistent savings
between 20-40% compared with E7. 123
Fig 5-17 Optimum tank sizes 124
Fig 5-18 Comparison of an E7 and optimised solution over 3 days 125
Fig 5-19 Global and local minimum solutions. The x-axes are relative linear values for visual
comparison only. 127
Fig 6-1 A cross section through a basic storage radiator 130
Fig 6-2 Schematic of the heat transfer boundaries in the model 133
Fig 6-3 The neural emulation of the theoretical model for predicting the room temperature in half-an-
hour, given the storage and direct acting energy inputs 133
Fig 6-4 A schematic of how the simulations were performed 137
Fig 6-5 Half-hourly errors over the 72 day simulation. The error is the difference between the emulated
and achieved temperatures. 138
Fig 6-6 Investigating why the early errors occur 140
Fig 6-7 The absolute error of the emulator for each time step averaged over the 72 days 141
Fig 6-8 The actual daily errors do not follow the time averaged pattern of Fig 6-7 143

4 73
4.1 What are Genetic Algorithms? 73

4.2 How do GAs Work? 74

4.3 The GA Operators 75

4.4 Implementation 76
4.4.1 Encoding 76
4.4.2 Population Size 77
4.4.3 Selection 78
4.4.4 Crossover 79
4.4.5 Mutation 79

4.5 Experiments with GAs 79
4.5.1 Chinese Hat Optimisation Problem 79
4.5.2 Results 80
4.5.3 Other Iterated Hill-Climbing Methods 85
4.5.4 Royal Road Functions 88

4.6 Chapter Summary 98

5 101
5.1 Introduction 101

5.2 Model to be Optimised 103

5.3 Simulated Water Heating Model 105

5.4 Data Used 106

5.5 Optimisation Procedure 107

5.6 Profiling Usage Patterns 108

149

5.7 Results 109

5.8 Discussion of Results 121
5.8.1 Does Water Storage Save Money ? 121
5.8.2 How did the Profiling Perform ? 121
5.8.3 How Much Money could be Saved? 122
5.8.4 Why is the Optimised Schedule Sometimes Worse? 123
5.8.5 How is the Optimisation Working 125
5.8.6 Local Minima 126

5.9 Chapter Summary 127

6 129
6.1 What are Storage Radiators ? 129

6.2 Room Thermal Model 131

6.3 Neural Network Emulator 132

6.4 Optimisation Procedure 134

6.5 Simulation Procedure 136

6.6 Results 138
6.6.1 Did the Controller Work ? 138
6.6.2 Why do the Large Initial Errors Occur ? 138
6.6.3 Performance of the 1-step-ahead Predictor as a Recursive 48-step-ahead Predictor 141
6.6.4 Comparison with other Heating Strategies 142

6.7 Emulator Improvements 145

6.8 Chapter Summary 145

150

[66] J.H. Holland, Adaptation in Natural and Artificial Systems, University of

Michigan Press, 1975.

[67] L. Altenberg, Evolving better representations through selective genome growth,’

Proceedings of the 1st IEEE Conference on Evolutionary Computation, vol.1,
1994, pp. 182-187

[68] M. Mitchell, An introduction to Genetic Algorithms, The MIT press, 1996

[69] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, 1989.

[70] M. Mitchell, S. Forrest, and J.H. Holland, “The royal road for genetic

algorithms: Fitness landscapes and GA performance,” Proceedings of the First
European Conference on Artificial Life, 1992, pp. 245-254.

[71] S. Forrest and M. Mitchell, “Relative building-block fitness and the building-

block hypothesis,” In Foundations of Genetic Algorithms 2, Morgan Kaufmann,
1993, pp.109-126.

[72] M. Mitchell, J.H. Holland, and S. Forrest, “When will a genetic algorithm

outperform hill climbing?,” In Advances in Neural Information Processing
Systems 6, Morgan Kaufmann, 1994.

[73] T. Walsh, “Empirical methods in AI,” AI Magazine, summer 1998, pp.121-124.

[74] K.A. De Jong, “Genetic algorithms are NOT function optimizers,” In

Foundations of Genetic Algorithms 2, Morgan Kaufmann, 1993, pp.5-17.

[75] A.E. Nix and M.D. Vose, “Modeling genetic algorithms with Markov chains,”

Annals of Mathematics and Artificial Intelligence, vol. 5, 1992, pp.79-88.

[76] S. Kirkpatrick, D.C. Gellat and M.P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, 1983, pp. 671-680.

[77] A.H.G. Rinnooy Kan and G.T. Timmer, “Global optimisation: a survey,”

International Series of Numerical Mathematics, vol. 87, 1989, pp. 133-155.
Bikhauser Verlag Basel.

[78] F. Glover, “Tabu search I,” ORSA J. Comp., vol. 1, 1989, pp. 190-296.

[79] E.L. Lawler and D.E. Wood, “Branch and bound methods : a survey,” Journal of

Oper. Res., vol. 14, 1966, pp. 699-719.

151

[80] D.H. Wolpert and W.G. Macready, “No free lunch theorems for optimization,”

IEEE Trans. Evolutionary Computation, vol. 1, no. 1, April 1997, pp. 67-82.

[81] B. Rautenbach and I.E. Lane, “The multi-objective controller: a novel approach

to domestic hot water load control,” IEEE Trans. Power Systems, vol. 11, no. 4,
November 1996, pp. 1832-1837.

[82] S.J. Dickinson, “A building heating system simulation and optimisation tool

incorporating bond graphs and genetic algorithms,” PhD Thesis, Lancaster
University, 1996.

[83] Symposium papers on “Predicting hourly building energy usage: the great energy

predictor shootout – the aftermath,” ASHRAE Transactions, 1994, vol. 100, pt.
2, pp. 1053-1118. (also see refs 37 and 43)

[84] A. Dhar, “Development of Fourier series and artificial neural network

approaches to model hourly energy use in commercial buildings,” PhD Thesis,
Texas A&M University, May 1995.

[85] P.Y. Glorennec, “Modélisation d’un bâtiment par un réseau neuronal récurrent,”

Présenté aux Septièmes Journées Internationales Les Réseaux Neuromimétiques
et leurs Applications, Paris, October 1994. (in French)

[86] M.C. Mozer, R.H. Dodier, M. Anderson, L. Vidmar, R.F. Cruickshank III, and

D. Miller, “The Neural Network House: An overview,” In L. Niklasson & M.
Boden (Eds.) Current trends in connectionism , 1995, pp. 371-380. Also online
http://www.cs.colorado.edu/~mozer/nnh/index.html

[87] M.C. Mozer, L. Vidmar, and R.H. Dodier, “The neurothermostat: predictive

optimal control of residential heating systems,” In M.C. Mozer, M.I Jordan & T.
Petsche (Eds.), Advances in neural information processing systems 9. 1997.

[88] K.O. Temeng, P.D. Schnelle, and T.J. McAvoy, “Model predictive control of an

industrial packed bed reactor using neural networks,” J. Proc. Cont., vol. 5, no.
1,1995, pp.19-27.

[89] G. Gvazdaitis, S. Beil, U. Kreibaum, R. Simutis, I, Havlik, M. Dors, F.

Schneider, and A. Lubbert, “Temperature control in fermenters: application of
neural nets and feedback control in breweries,” J. Inst. Brew., Vol. 100, 1994,
pp. 99-104.

[90] L. Clark, “Smart meter gives you the power,” Sunday Star-Times, November 30

1997, pp. D5. (New Zealand newspaper) relating to Exicom Technologies
(1996).

152

[91] B. Daryanian, R.E. Bohn, and R.D. Tabors, “An experiment in real time pricing

for control of electric thermal storage systems,” IEEE Trans. Power Systems,
vol. 6, no. 4, November 1991, pp.1356-1365.

[92] B. Daryanian, R.E. Bohn, “Sizing of electric thermal storage under real time

pricing,” IEEE Trans. Power Systems, vol. 8, no. 1, February 1993, pp. 35-43.

[93] K.L. Lo, J.R. McDonald, and T.Q. Le, “Time-of-day electricity pricing

incorporating elasticity for load management purposes,” Electrical Power and
Energy Systems, vol. 13, no. 1, 1991, pp.230-239.

[94] M. Räsänen, J.Ruusunen, and R.P. Hämäläinen, “Customer level analysis of

dynamic pricing experiments using consumption-pattern models,” Energy, vol.
20, no. 9, 1995, pp.897-906.

[95] M. Räsänen, J.Ruusunen, and R.P. Hämäläinen, “Optimal tariff design under

consumer self-selection,” Energy Economics, vol. 19, 1997, pp. 151-167.

[96] J. Zarnikau, “Customer responsiveness to real-time pricing of electricity,”

Energy, vol. 11, 1990, pp. 99-116.

[97] A.K. David and Y.Z. Li, “Effect of inter-temporal factors on the real time pricing

of electricity,” IEEE Trans. Power Systems, vol. 8, no. 1, February 1993, pp. 44-
52.

	What are Genetic Algorithms?
	How do GAs Work?
	The GA Operators
	Implementation
	Encoding
	Population Size
	Selection
	Crossover
	Mutation

	Experiments with GAs
	Chinese Hat Optimisation Problem
	Results
	Other Iterated Hill-Climbing Methods
	Steepest-Ascent Hill Climbing (SAHC)
	Next-Ascent Hill Climbing (NAHC)
	Random-Mutation Hill Climbing (RMHC)

	Royal Road Functions

	Chapter Summary
	Introduction
	Model to be Optimised
	Simulated Water Heating Model
	Data Used
	Optimisation Procedure
	Profiling Usage Patterns
	Results
	Discussion of Results
	Does Water Storage Save Money ?
	How did the Profiling Perform ?
	How Much Money could be Saved?
	Why is the Optimised Schedule Sometimes Worse?
	How is the Optimisation Working
	Local Minima

	Chapter Summary
	What are Storage Radiators ?
	Room Thermal Model
	Neural Network Emulator
	Optimisation Procedure
	Simulation Procedure
	Results
	Did the Controller Work ?
	Why do the Large Initial Errors Occur ?
	Performance of the 1-step-ahead Predictor as a Recursive 48-step-ahead Predictor
	Comparison with other Heating Strategies

	Emulator Improvements
	Chapter Summary

