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44    
Genetic Inspired Optimisation 

 

 

 

4.1 What are Genetic Algorithms? 

Genetic algorithms (GAs) are directed random search techniques used to look for pa-

rameters that provide a good solution to a problem. Essentially they are nothing more 

than educated guessing. The ‘education’ comes from knowing the suitability of previous 

candidate solutions and the ‘guessing’ comes from combining the fitter attempts in order 

to evolve an improved solution. 

For example, the back propagation algorithm is a gradient based method for finding a 

weight set for a MLP that best maps the inputs onto the output, a search that can also be 

performed by GAs [7]. The optimisation problem of interest in this work is finding a 

schedule for electrically charging storage devices (hot water tanks and storage radiators) 

over a 24 hour period, given that electricity prices vary half-hourly. A solution is sought 
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that minimises electricity costs whilst satisfying the hot water or thermal comfort re-

quirements. 

 

4.2 How do GAs Work? 

The inspiration for GAs came from nature and survival of the fittest. In a population, 

each individual has a set of characteristics that determine how well suited it is to the 

environment. Survival of the fittest implies that the ‘fitter’ individuals are more likely to 

survive and have a greater chance of passing their ‘good’ features to the next generation. 

In sexual reproduction, if the best features of each parent are inherited by their offspring, 

a new individual will be created that should have an improved probability of survival. 

This is the process of evolution. 

In nature the ‘blueprint’ of individuals is contained within their DNA. The DNA can be 

thought of as a string of genes, with each gene or combination of genes representing a 

particular feature. Reproduction is the ‘crossover’ of two DNA strings to produce a new 

blueprint that has genes from both parents. Mutation can also occur where a particular 

gene is not an exact copy of either parent. 

In genetic algorithm terms, a candidate solution is often referred to as a chromosome or 

string, which is a sequence of encoded numbers. This is commonly referred to as a bit 

string if the numbers are binary encoded. 

The process involved in GA optimisation problems is based on that of natural evolution 

and broadly works as follows, 

 

1. Randomly generate an initial population of potential solutions. 

2. Evaluate the suitability or ‘fitness’ of each solution. 

3. Select two solutions biased in favour of fitness. 

4. Crossover the solutions at a random point on the string to produce two new solutions. 
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5. Mutate the new solutions based on a mutation probability. 

6. Goto 2. 

 

4.3 The GA Operators 

Selection, crossover and mutation are the basic operators involved in GAs. How these 

and other factors can affect the operation of GAs will be demonstrated by means of 

several examples and experimental observations. 

Consider the popular board game ‘Mastermind’ where a player has to determine a hid-

den sequence of colours starting from an initial random guess. This initial guess is 

scored with a black marker for each colour in the correct position and a white marker for 

a correct colour but in the wrong position. Further guesses are made and scored until the 

correct sequence is determined or a given number of attempts have been made. In this 

game the correct solution evolves from the more suitable of all previous attempts, with 

clues from unsuitable candidate solutions also being part of the deduction process. This 

is a type of ‘blind’ optimisation problem where no information is available on what 

makes a good solution, only information on how good solutions are. 

Given a few initial guesses the player will select high scoring attempts and perform 

crossover to see if this results in an improvement. New colours will almost certainly 

have to be mutated into the ‘educated guesses’ in the attempt to find the correct se-

quence. 

Fig 4-1 demonstrates how these three operators work considering a scoring scheme 

where a point is scored only for a number in the correct position. 

The GA search procedure is very easy to understand and implement, with nature provid-

ing ready examples of exactly how things could be done. 
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required solution

1      2      4      3

attempt     score
     1 1 4      2      1      1

     2 2 1      4      4      1 >selection

     3 2 1      2      3      2 >selection

     4 3 1      2      4      1 crossover

     5 4 1      2      4      3 mutation

 

Fig 4-1   An example of how the required solution evolves using the selection, crossover and mutation 
operators 

 

4.4 Implementation 

4.4.1 Encoding 

In optimisation problems a set of parameters is sought that will give the best solution to 

a particular problem. In order to implement a GA these parameters must be encoded into 

a string so that crossover and mutation can be applied. Binary encodings are the most 

common, due to the fact that Holland used them in his early pioneering work [66]. In 

DNA base 4 encoding is used, as the building blocks of DNA can take on 4 values, 

translated as A, C, G, or T. 

Any base can be used, as it is just a different method of encoding the same information, 

but the lower the base the longer the string will be. For example, if a number is sought 

between 0 and 255 then this can be encoded as a binary string of length 8, a base 4 string 

of length 4, a base 16 string of length 2 or a base 256 string of length 1, as shown in 

Table 4-1. 
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It is clear that the importance of the operators will change depending on the base used. 

In base 2, the two given strings contain all the information required to derive any num-

ber between 0-255 by crossover alone. In base 16, two strings can at most lead to only 4 

different numbers by crossover alone, mutation being required to introduce new infor-

mation. In base 256 crossover cannot occur, mutation being the only operator that can 

introduce new numbers and finding a specific number becomes a pure random search. 

In choosing an encoding scheme the nature of the problem will play a major role. If 

many real valued numbers are required in a solution then binary encoding becomes 

impractical as the string length increases. In [67] a method of selective genome growth 

is proposed that helps solve the problem of choosing how to represent a genetic algo-

rithm. 

 

4.4.2 Population Size 

The population size is the number of candidate solutions in any one generation. In natu-

ral evolution the total population size is governed by what is sustainable by the 

environment and similarly in GAs the larger the population size the more computation-

ally intensive (in terms of memory requirement) is the search. 

In nature, the bigger the gene pool the more diverse is the genetic make up of the popu-

lation with many individuals each with their own set of characteristics that enable them 

to survive. One advantage of this diversity is that there will be no dominant gene that, 

for instance, may be susceptible to a particular disease and result in the elimination of 

the whole species. In the bird family, sub-species have evolved with dominant character-

Table 4-1   Representations of the base 10 numbers 0 and 255 in different bases 

base 2 
length=8 

base 4 
length=4 

base 10 
length=3 

base 16 
length=2 

base 256 
length=1 

00000000 0000 000 00 0 
11111111 3333 255 FF or |15|15| |255| 
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istics that allow them to survive their local conditions and in effect are sub-optimal 

solutions in the search for a global ‘super-bird’. With large populations it can be seen 

how the search for the global optimal solution can be a slow (if not never-ending) proc-

ess. 

If the population size is small (e.g. a pride of lions), then a strong individual quickly 

becomes dominant and the diversity of the gene pool is restricted. The result is that good 

individuals (local optima) are quickly created but the dominance of particular genes 

restricts the search space. The chance of evolving the ultimate ‘super-lion(ess)’ (global 

optimum) is severely limited and would depend on mutation introducing new genes to 

diversify the search. 

As new solutions are generated it is common to keep the population size constant by 

eliminating individuals (or letting them die), although this does not have to be the case. 

Ideas for the selection procedure for elimination are plentiful in nature. For example, 

each generation could be completely replaced by its offspring, or as a new offspring is 

created it could be accepted or rejected depending on its fitness. The advantage com-

puters have over nature is that good individuals do not have to die and can be retained 

for indefinite reproduction. The retention of certain fit individuals is known as ‘elitism’. 

 

4.4.3 Selection 

This is the procedure for choosing individuals (parents) on which to perform crossover 

in order to create new solutions. The idea is that the ‘fitter’ individuals are more promi-

nent in the selection process, with the hope that the offspring they create will be even 

fitter still. 

Two commonly used procedures are ‘roulette wheel’ and ‘tournament’ selection. In 

roulette wheel, each individual is assigned a slice of a wheel, the size of the slice being 

proportional to the fitness of the individual. The wheel is then spun and the individual 

opposite the marker becomes one of the parents. In tournament selection several indi-

viduals are chosen at random and the fittest becomes one of the parents. 
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4.4.4 Crossover 

Along with mutation, crossover is the operator that creates new candidate solutions. A 

position is randomly chosen on the string and the two parents are ‘crossed over’ at this 

point to create two new solutions. Multiple point crossover is where this occurs at sev-

eral points along the string. A crossover probability (Pc) is often given which enables a 

chance that the parents descend into the next generation unchanged. 

 

4.4.5 Mutation 

After crossover, each bit of the string has the potential to mutate, based on a mutation 

probability (Pm). In binary encoding mutation involves the flipping of a bit from 0 to 1 

or vice versa. 

 

4.5 Experiments with GAs 

4.5.1 Chinese Hat Optimisation Problem 

To empirically evaluate the importance of the various parameters and techniques in 

GAs, several optimisation tests were performed. The code used is based on that in Ap-

pendix D. The experiments used tournament selection and a constant population size 

with the offspring replacing the parents every generation. 

The fitness evaluation function (fitness landscape, scoring template) of candidate solu-

tions for the first optimisation problem examined is shown in Table 4-2. For reference 

purposes this problem has been named the Chinese Hat because the scoring template 

diverges linearly outwards from the centre. There are two possible solutions for maxi-

mum fitness, one of which is shown by candidate solution 2, the other is the inverse of 

this where all the bits flip. The total number of candidate solutions is 2(string length). 
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In the experiments, tests for each particular parameter setting were repeated to conver-

gence 200 times to determine the average number of generations required to find the 

solution. Each subsequent trial differed by randomly generating a new initial population. 

After each crossover, mutation was only allowed on one randomly selected bit and 

whether it occurred depended on Pm. 

 

4.5.2 Results 

The results of varying the GA parameters for the Chinese Hat optimisation problem are 

shown in Fig 4-2 to Fig 4-8. All comments and discussion related to each figure are 

included below that figure. 

Table 4-2   An example of how the fitness of the solutions to the Chinese Hat problem are evaluated for a 
string length of 8. Each bit value in a solution is multiplied by the value in the same position in the 
scoring template and the total fitness is the square of the sum of all the bit scores. Each bit can have a 
value of 1 or –1 

 
Scoring Template 4 3 2 1 -1 -2 -3 -4 

 
Candidate Solution 1 1 1 -1 1 -1 -1 1 -1 

Bit by bit Score 1 4 3 -2 1 1 2 -3 4 
Total Score 1 = 102 = 100 

 
Candidate Solution 2 -1 -1 -1 -1 1 1 1 1 

Bit by bit Score 2 -4 -3 -2 -1 -1 -2 -3 -4 
Total Score 2 = (-20)2  = 400 
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Fig 4-2   The effects of Pm and the selection procedure 

By increasing the number of candidates (competitors) in the tournament for parenthood 
the number of generations required to convergence reduces. This would indicate that 
little diversity in the gene pool is required for this particular problem. There is also an 
optimum Pm around 0.5. With a higher mutation probability the number of generations 
starts to increase, although this becomes less significant as the selection procedure is 
made more competitive. In Fig 4-2, Pc =1. 
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Fig 4-3   Elitism 

The introduction of an elitist strategy, where the best individual is always retained, 
shows significant improvements in performance but only for the higher mutation rates, 
indicating the solution is evolved from mutation of this ‘best’ individual. 
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Fig 4-4   Population size 

As would be expected, the larger the population size the fewer generations are required 
as the search space is increased. The highest rates of gain are seen by increasing the 
population size to 20, but even after this consistent reduction still occurs, as shown in 
Fig 4-5. 
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Fig 4-5   Population size 

A close up of Fig 4-4 shows consistent improvement in performance with increasing 
population size. 
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Fig 4-6   Function evaluations 

In serial computing it is not the number of generations that is important but the number 
of function evaluations. That is, how many solutions must be evaluated before the opti-
mum is reached, or roughly the number of generations multiplied by the population size. 
This gives an indication of the computing power (or time) required to solve the problem, 
assuming that evaluating the cost of each solution is a significant portion of the whole 
process. Fig 4-6 is the same data as that of the elitist tests in Fig 4-4, but with the num-
ber of evaluations also shown. It can be seen that for the given parameters, a population 
size of 6 is the most economical. After this the number of evaluations increases linearly 
with population size. 
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Fig 4-7   The effect of crossover and mutation probabilities for a population size of 6 

Thus far crossover has occurred in every reproduction. By introducing a crossover prob-
ability, the relative importance of crossover and mutation can be examined. This is 
shown for the most efficient population size of 6 and crossover probabilities of 0, 0.5 
and 1. What is seen is that the optimisation procedure for this small population relies 
solely on mutation with the crossover probability having a negligible effect. 
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Fig 4-8   The effect of crossover and mutation probabilities for a population size of 30 

With a larger population size increasing the crossover probability does improve the 
performance. Fig 4-8 is generated by the same procedure as Fig 4-7 but with a popula-
tion size of 30. It can be seen with this larger population size there is an optimal Pm but 
improvements are also made by increasing Pc. What Fig 4-7 and Fig 4-8 show is not 
unexpected and is reflected in nature in that small populations rely on mutation for 
diversity whereas in larger populations it is a combination of crossover and mutation. 
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The experiments on this simple optimisation problem have illustrated that selecting the 

correct parameters is very important in genetic algorithms. What is also very evident is 

that there are definite relationships between all the parameters showing that fine-tuning 

is required to increase the speed to success, or reduce the chance of failure. The tech-

nique always managed to solve the problem, but how does it compare with other hill-

climbing methods? 

 

4.5.3 Other Iterated Hill-Climbing Methods 

Other optimisation methods exist of which three were used for comparison with the GA. 

The following descriptions of these techniques are reproduced from [68]. 

 

4.5.3.1   Steepest-Ascent Hill Climbing (SAHC) 

1. Choose a string at random. Call this string current-hilltop. 

2. Going from left to right, systematically flip each bit in the string, recording the 

fitness of the resulting strings. 

3. If any of the resulting strings give a fitness increase, then set current-hilltop to 

the resulting string giving the highest fitness increase (ties are decided at ran-

dom). 

4. If there is no fitness increase, then save current-hilltop and goto step 1. Other-

wise goto step 2 with the new current-hilltop.  

5. When a set number of function evaluations have been performed (here, each bit 

flip in step 2 is followed by a function evaluation), return the highest hilltop that 

was found. 

4.5.3.2   Next-Ascent Hill Climbing (NAHC) 

1. Choose a string at random. Call this string current-hilltop. 
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2. For i from 1 to l (where l is the length of the string), flip bit i; if this results in a 

fitness increase, keep the new string, otherwise flip bit i back. As soon as a fit-

ness increase is found, set current-hilltop to that increased fitness string without 

evaluating any more bit flips of the original string. Go to step 2 with the new 

current-hilltop, but continue mutating the new string starting immediately after 

the bit position at which the previous fitness increase was found. 

3. If no increase in fitness were found, save the current-hilltop and goto step 1. 

4. When a set number of function evaluations has been performed, return the high-

est hilltop that was found. 

 

4.5.3.3   Random-Mutation Hill Climbing (RMHC) 

1. Choose a string at random. Call this string current-hilltop. 

2. Choose a bit at random to flip. If the flip leads to an equal or higher fitness, then 

set current-hilltop to the resulting string. 

3. Goto step 2 until an optimum string has been found or until a maximum number 

of evaluations has been performed. 

4. Return the current value of current-hilltop. 

 

1000 trials of each of these three algorithms were performed on the Chinese Hat prob-

lem for a string length of 50. The average number of evaluations, given in Table 4-3, 

shows that a GA is not the best method of solving this particular problem. In fact NAHC 

always reaches a global solution by traversing the string just once because the Chinese 

Hat is a smooth function when traversed from left to right. 
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The best GA based performance had a population size of 6 with a randomly selected 

gene being mutated with a probability of 0.5. With these parameters it was shown that 

crossover had a very limited effect (Fig 4-7, on page 84). As mutation appears to be the 

dominant process a variation of RMHC we called multiple random mutation hill climb-

ing (MRMHC) was tried on the Chinese Hat function. This is basically RMHC but with 

each gene having a mutation probability as opposed to one randomly selected gene 

being mutated. Another way of describing MRMHC is a GA with a population size of 1 

and the mutated offspring only surviving if it is as good as or better than the parent. 

Fig 4-9 (on page 88) shows the average performance of MRMHC over 1000 tests with 

varying mutation probabilities and string lengths. The circled points represent the opti-

mum mutation probabilities for the various string lengths with a pattern emerging that a 

Pm of (1/string length) appears to be the optimum. On average this is equivalent to 1 bit 

change per mutation which is an unsurprising result. Any less than this and some 

evaluations will be wasted as there will be no change, any more and there will be prob-

lems in fitting the last bit into position as there is a higher probability that more than one 

bit will be changed at once. The best performance with MRMHC for a string length of 

50 was 430 evaluations, which occurred with Pm at just over 1/50 or 0.02. 

The optimum mutation rate for MRMHC is on average 1 bit change per string, which is 

almost similar to RMHC, in which only one bit change per string is permitted. Similar 

results would be expected but it is noted that MRMHC requires over twice as many 

evaluations as RMHC. Why should this be so? 

Table 4-3   The average number of function evaluations over 1000 trials for the Chinese Hat problem 
with a string length of 50 

SAHC NAHC RMHC best GA MRMHC 
1082 48.6 190 650 430 
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If there is only one bit flip that is required to reach the optimum then RMHC should find 

this in an average number of evaluations equivalent to the string length. In MRMHC it 

is possible that in three consecutive evaluations the number of bit flips is 0,1 and 2, 

giving an average of 1. An evaluation with 0 flips is wasted and because only one bit 

requires correction, two bit flips will never find the optimum. It can thus be hypothe-

sised why MRMHC gives a worse performance than RMHC for this particular problem. 

 

4.5.4 Royal Road Functions 

So what kind of problems will GAs be superior at solving than other search techniques? 

The Schema Theorem and Building Block Hypothesis [66, 69] play on the idea that 

solutions are made up of short blocks of fit schema that use crossover to build up these 

schema into desirable solutions. A set of functions known as the ‘Royal Roads’ [68, 70, 

71, 72] were developed that provide a fitness landscape designed specifically to be 

easily solvable by GAs if they did work in this building block manner. As described by 

the developers (Mitchell et al.), ‘given the building block hypothesis, one might expect 
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Fig 4-9   The effect of mutation probability and string length for 

Multiple Random Mutation Hill Climbing optimisation 
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that the building block structure of R1 will lay out a “royal road” for the GA to follow 

to the optimal string’. Table 4-4 shows one of these Royal Road functions, R1. 

In their analysis, Mitchell et al. used a GA with a population size of 128, single point 

crossover with Pc fixed at 0.7 and Pm at 0.005, full details are given in [68]. Over 200 

runs the mean number of GA function evaluations was 61,334, an order of 10 times 

higher than RMHC (6,179). NAHC and SAHC never reached the optimum solution, 

which is not unexpected given the nature of the fitness landscape. 

In section 4.5.2 the importance of the GA parameters was demonstrated, although only 

on a simple smooth function that proved easier to solve by other methods. The Royal 

Road problem was investigated in the same manner to determine if the nature of the 

problem affected the relationship between the parameters. 

Initial tests were performed to see if the results of Mitchell et al. could be replicated and 

also to examine the effect of varying the GA parameters. Mutation probabilities between 

0.002 (0.13 in 64) and 0.05 (3.2 in 64) were tested for crossover probabilities between 0 

and 1 inclusive. Each set of parameters was repeated to convergence 20 times and the 

mean value recorded. Tournament selection was used where each parent was the best of 

5 randomly chosen candidates. The results are shown in Fig 4-10. 

 

Table 4-4   The Royal Road (R1) fitness function. A bit string of length 64 contains 8 short schema that
are the building blocks of the optimal schema. The wildcard ‘*’ represents a 0 or 1 (or ‘do not care’). 
The fitness of each candidate solution increases with the number of these building blocks present. 

 
11111111 ******** ******** ******** ******** ******** ******** ********  Schema 1 = 8 
******** 11111111 ******** ******** ******** ******** ******** ********  Schema 2 = 8 
******** ******** 11111111 ******** ******** ******** ******** ********  Schema 3 = 8 
******** ******** ******** 11111111 ******** ******** ******** ********  Schema 4 = 8 
******** ******** ******** ******** 11111111 ******** ******** ********  Schema 5 = 8 
******** ******** ******** ******** ******** 11111111 ******** ********  Schema 6 = 8 
******** ******** ******** ******** ******** ******** 11111111 ********  Schema 7 = 8 
******** ******** ******** ******** ******** ******** ******** 11111111  Schema 7 = 8 
 
11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111  Schema Opt  = 64 
 
11111111 11110011 01110011 11111111 11111111 00000001 11110010 11111111  e.g.   Score  = 32 
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Fig 4-10   The effect of the mutation probability for four crossover probabilities (0,0.1,0.7,1) on the Royal 
Roads (R1) landscape. Each point is the average over 20 tests with a population size of 128. Mitchell et 
al. used a mutation probability of 0.005 (0.33 in 64) and crossover probability of 0.7 that gave a mean of 
61,334 function evaluations to convergence over 200 tests. 

The results of Mitchell et al. were easily replicated even though a different selection 

procedure was used. By increasing Pm to 0.02 (1.3 in 64) the number of evaluations was 

reduced to around 14,000, a factor of 4 improvement and only twice as many as RMHC. 

With this mutation probability the function could be optimised in 28,000 evaluations 

without using crossover at all, half as many as the evidently poorly tuned GA of 

Mitchell et al. With no crossover, each offspring is a mutation of a parent chosen due to 

its fitness. 

It has been demonstrated that a GA with no crossover can outperform a poorly tuned 

GA on a fitness landscape purposely designed to suit the crossover operator. If it can be 

discovered what determines a good mutation probability with no crossover then this 

should be generally applicable when crossover is applied. 

With no crossover, the relationship between the mutation probability and selection 

procedure was examined. In previous tests on the R1 landscape tournament selection 

was used where each parent was the fittest of 5 randomly selected candidates. The num-

ber of candidates was varied along with Pm, as shown in Fig 4-11 (on page 91). What is 

clear is that the less stringent the selection, the tighter the band is for an acceptable value 

of Pm.  
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For each selection policy there is also an upper mutation probability past which the 

required evaluations increase exponentially; the more stringent the selection then the 

higher is this upper limit. 

The objective of this exercise was to discover what determines a good mutation prob-

ability, which has been shown for R1 to also depend on the selection procedure used, 

becoming more important the weaker the selection procedure. There is a definite lower 

limit around 0.005 or 0.33 in 64. 

In order to determine a desirable mutation rate the effect of the population size must also 

be investigated. Fig 4-12 (on page 92) shows that given a near optimal Pm (0.01) there is 

little sensitivity to population size, but as Pm increases so does the sensitivity to popula-

tion size. 

The conclusion reached thus far is that the mutation probability is the most important 

GA parameter in solving the R1 landscape. There is also much evidence (and common 

sense) to suggest that the optimum mutation probability is related in some way to the 

string length. In order to test this theory MRMHC (a GA with no crossover and popula-

tion size 1 with the new solution being retained if it is better than or equal to the parent) 
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Fig 4-11   The relationship between the mutation probability and the number of contestants in 

tournament selection (2,3,4, and 5). The crossover probability is 0 and the population size 
is 128. The mean of 20 trials was recorded. 
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was used to solve three versions of R1, with string lengths of 64, 128 and 256. The 

results in Fig 4-13 show that the longer the string the more sensitive is the search to Pm 

(the y-axis scale in Fig 4-13 is different for each population size). The optimum value of 

Pm was observed to be about (1.2/string length). The question to be investigated now is 

what is special about this mutation rate? 
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Fig 4-12   The effect of the mutation probability and the population size (10,40,128). In these cases 
the Pc = 0 and the number of candidate parents is 5. 
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Fig 4-13   The effect of the mutation probability on MRMHC, averaged  over 200 tests. The optimum 

is (1.2/64). 
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In their work, Mitchell et al. analysed the RMHC algorithm with a simple derivation 

based on probability that gave the expected number of function evaluations to solve R1. 

Consider R1 as in Table 4-4. In each schema of length 8 the number of possible combi-

nations is 28. If one and only one bit is changed in each evaluation then the chance of 

this bit being in a specific schema is 1/8, since there are 8 schemas in total. Thus the 

chance of randomly creating a particular schema is once every 28 × 8 evaluations. Ini-

tially there are eight schemas to choose from so the chance of creating any schema is 

once in every 28 × 8/8 evaluations. Once one schema is found the chance of finding a 

further schema decreases to 7/8 of that of finding the first since 1 in 8 bit changes are 

likely to be wasted changing the already discovered schema. The number of evaluations 

required to find this second schema thus increases to 8/7 that required to find the first. 

The expected number of evaluations to find a single schema is in fact slightly more than 

28 and as determined by a Markov-chain analysis it is 301.2 [68]. The expected number 

of evaluations to solve the problem is thus, 
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Tests were performed for RMHC that tracked the creation of the schema in the solution 

in order to confirm the theoretical performance. Table 4-5 shows the results averaged 

over 1000 trials which almost mirror the theoretical expectations. 

 

1st     discovered  schema    8th 
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RMHC has been shown to behave as the probability theory predicted. In GAs the theory 

of how they behave remains a theory, with little experimental evidence to try to observe 

their actual behaviour. 

Tests were performed using GAs on the R1 landscape that tracked the formation of the 

schema. The trials were performed 500 times with the maximum number of generations 

set at 800. The maximum, minimum and average fitness of the population were re-

corded at each generation and averaged for the trials that had not converged. Initially the 

crossover rate was set at 0.7, population size 128 and the number of competitors in the 

tournament was 5. Three mutation rates were used, 0.33/64, 1.3/64 and 2.7/64. The 

results are shown in Fig 4-14 to Fig 4-17. 

0.005 (0.33/64)

0.02 (1.3/64)

0.042 (2.7/64)

0

8

16

24

32

40

48

56

64

0 100 200 300 400 500 600 700 800
Generations

M
in

im
um

 P
op

ul
at

io
n 

Fi
tn

es
s

 
Fig 4-14   The effect of the mutation rate on the minimum population fitness 

The lower the mutation rate the fitter is the worst individual in the population. Note that 
in all cases the minimum fitness reaches a plateau and only for the middle mutation rate 
of 1.3/64 do all the trials converge. 

Table 4-5   The theoretical and experimental (averaged over 1000 trials) number of evaluations to 
discover each subsequent schema for R1 using RMHC. The total theoretical evaluations = 6,549, experi-
mental = 6,542 and Mitchell et al. = 6,179. 

schema 1 2 3 4 5 6 7 8 
theoretical 
evaluations 301.2 344.6 401.6 481.9 602.4 803.2 1204.8 2409.6

experimental 
evaluations 284 355 384 508 622 797 1182 2410 
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Fig 4-15   The effect of the mutation rate on the average population fitness 

It can be seen how the rise in average population fitness is initially high for all cases. 
The best average population is with the lowest mutation rate, but this does not find the 
global solution in all cases. 
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Fig 4-16   The effect of the mutation rate on the maximum population fitness 

Note that the high mutation rate generally limits the maximum population fitness to 6 
schema (a fitness of 48). This is because schema are destroyed as new ones are created. 
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Fig 4-17   The number of converged trials at each generation for the three mutation rates 

Quite clearly from a pure optimisation perspective, where the goal is to find the global 
solution, the mutation rate of 1.3/64 is superior in all respects, as shown by Fig 4-17. 

 

Fig 4-18 to Fig 4-21 show the effect of the crossover probability for the near optimum 
mutation rate of 1/64. It can be seen that increasing Pc only improves the speed to con-
vergence, with no other effect on the behaviour of the GA, as identified by all the lines 
converging to the same fitness value. In all cases every trial converged, even with Pc=0. 
The conclusion drawn is that mutation is the most important operator for this particular 
problem. 
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Fig 4-18   The effect of Pc  on the minimum fitness 
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Fig 4-19 The effect of Pc on the average fitness 
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Fig 4-20   The effect of Pc on the maximum fitness 
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Fig 4-21 The number of converged trials at each generation for the three crossover probabilities 

 

4.6 Chapter Summary 

The work in this chapter has been an empirical investigation of parameters that affect 

GA performance. As commented in [73], ‘there is a growing realisation that results 

obtained empirically are no less valuable than theoretical results’. 

What has been concluded is summed up in [74], ‘From a function optimization point of 

view, GAs frequently don’t exhibit a killer “instinct” in the sense that, although they 

rapidly locate the region in which a global optimum exists, they don’t locate the opti-

mum with similar speed’. 

This ‘killer instinct’ has been shown to be dependent on the mutation rate, which is 

critical for efficient GA performance in global optimisation. In humans, characteristics 

of individuals that enable them to stand out from the norm are often a result of mutation. 

This is exemplified by Veikko Hakulinen, a Finnish cross-country skier who won med-

als in the 50k, 30k, 15k and 4x10k relay at the 1956 winter Olympics. On medical 

examination it was found that he had an excessive red blood cell count that enabled him 

to take in more oxygen and not become out of breath. This was caused by a genetic 

defect with a probability of occurring equal to that of picking a specific light bulb with 

all the light bulbs on earth to choose from. 
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There has been much theoretical academic work in trying to improve the efficiency of 

GAs by optimising parameter settings. In other work, previously claimed ‘good’ settings 

are taken and used on totally unrelated problems. If GAs are to be used for function 

optimisation then a thorough investigation of the parameters is required. 

It must be remembered that ‘Genetic algorithms are NOT function optimizers’ [74] and 

that other techniques do exist, that, although they do not sound as interesting, may be 

more appropriate for solving a particular class of problem. Optimising a system where 

there is no information on the dynamics (‘black box optimisation’) is essentially a di-

rected random search, with the direction being guided by the strategy used. The purpose 

of these strategies is to guide the search to increase the probability that in time, a solu-

tion will be found. As was demonstrated (see Table 4-5), on average over many trials, 

random mutation hill climbing behaves exactly as a Markov chain analysis predicts. Nix 

and Vose [75] performed a similar Markov chain analysis for a simple genetic algorithm 

and claim that ‘if the finite population is sufficiently large, we can accurately predict the 

convergence behaviour of a real GA’. 

Along with GA’s, simulated annealing [76] is another popular strategy for ‘black box’ 

optimisation that is inspired by nature. This is based around the fact that close tempera-

ture control must be maintained when cooling liquids into solids in order to attain a 

specific lattice structure. The most energy efficient lattice structure is obtained by very 

slow cooling and sometimes slight heating. This is reflected in the optimisation by only 

applying slight random perturbations and limiting the ‘temperature gradient’ (the 

amount of improvement allowed in new solutions). Successive solutions are also al-

lowed to be ‘hotter’ (or worse) than previous attempts. 

Many other optimisation strategies exist [77], including and tabu search [78] and branch 

and bound [79] (branch and bound methods are not strictly black box since they rely 

explicitly on the cost structure of partial solutions [80]). 

In conclusion ‘for any algorithm, any elevated performance over one class of problems 

is offset by performance over another class’ [80]. 
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In chapter 5 a variation of RMHC is used for the optimisation of a domestic hot water 

tank based on real-time pricing of electricity. 
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55    
Domestic Hot Water Optimisation  

 

 

 

5.1 Introduction 

The objective of this thesis is to develop control strategies for electric thermal storage 

(ETS) systems under real-time pricing tariffs. The ETS devices under consideration are 

domestic hot water tanks and storage radiators. In the previous chapters the tools that are 

to be employed were investigated and chapters 5,6 and 7 evaluate the effectiveness of 

these tools in both simulation and actuality. 

In this chapter the charging schedule for a hot water tank is optimised. Computer simu-

lations using actual consumption data compare the real costs of an optimised schedule 

and existing charging schedules. Eleven houses are simulated for one month. 
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In chapter 6 the controller for a storage radiator is simulated. This uses a similar optimi-

sation method to that used for the hot water tank, but introduces neural networks as a 

means of creating a thermal model from which to evaluate the candidate charging 

schedules. A ten week simulation compares the performance of the learning-optimised 

strategies to that of existing control options. 

Finally in chapter 7, a storage radiator in a real room is controlled using a neural model 

predictive controller. Data was recorded for five months and an empirical neural thermal 

model of the room created. This model was then used to determine control set points 

five hours in advance to track a given room temperature profile, but with no optimisa-

tion. The controller was in continuous operation for 2 weeks. 

Optimising ETS devices has been widely studied from various perspectives. In [81] the 

approach taken is to centrally control the water heating of blocks of houses, the main 

objective being to  reduce peak load, a utility benefit. In [82] storage radiators are opti-

mised for cost and comfort but using time-of-use (ToU) tariffs, genetic algorithms and a 

resistance-capacitance (RC) building thermal model.  

Neural networks have also been used to model building energy consumption [83,84]. In 

[85] a recurrent neural network was used to model a crèche with a heated floor. The 

objective here was to optimise the start-up time so as to minimise energy consumption. 

A particularly ambitious project for using neural networks for domestic control is out-

lined in  [86], where a house has been ‘computerised’. Optimising the heating control is 

being attempted in simulation [87] but the initial work only used neural networks to 

predict occupancy with a RC model used to predict the building response. The planning 

horizon is 120 minutes. 

Model predictive control using neural network empirical models rather than first princi-

ple models has been attempted in simulation mainly for the chemical process industries 

[88,89]. 

Any controller that is developed will ultimately rely on communication so that it can 

receive price and weather information. There will also be the need for half-hourly meter-
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ing if real-time tariffs are to be introduced. Such technology is already available and 

under trial in domestic houses [90]. Actual experiments in the logistics and hardware 

requirements of real-time control for thermal storage have been performed as far back as 

1989 [91,92]. 

This thesis is concerned with the development of control technology that is required to 

make real-time pricing feasible. An analysis of such tariffs is not given but sources for 

reference are [1,2,3,4,93,94,95,96,97]. What has to be considered is that using a predic-

tion of the next day’s demand sets the daily pool price. If this demand has the potential 

to adapt to the set price then the initial forecast is wrong. Will this have the desired 

effect of flattening the demand profile? 

 

5.2  Model to be Optimised 

Fig 5-1 shows the water heating system to be optimised. For each half-hour period there 

is a demand (litres) and price (pence/kWh), profiles of which are given at midnight for 

the following 24 hours. The criterion to be satisfied is that the demanded water (in the 

24 hours following midnight) must be supplied at a set temperature in the cheapest 

manner. Two heating elements exist, one in the storage tank (element 1) and one at the 

outlet (element 2). The latter is to ensure adequate supply temperature (Trequired) and can 

be supplied with warm water from the storage tank via tap 1 or ambient water from the 

mains via tap 2. For a 24-hour period of known demand and price, the challenge is to 

determine for each half-hour the water source (tap1/tap2) and the state of heating ele-

ment 1 (on/off) that will give the cheapest cost. Heating element 2 is not controlled but 

delivers the required amount of energy to maintain the delivered water at Trequired. 



104 

Tstored

Tambient

Trequired

tap 1

tap 2

element 1

element 2
demand

 

Fig 5-1   Schematic of the hot water system 

 

For each half-hour two decisions have to be made, 

1. If there is demand then shall the source be tap 1 or tap 2? 

2. Shall the tank be charged by activating element 1? 

There are thus two options for each decision. If water is consumed in all of the 48 peri-

ods during a day then there are 2(48×2) potential solutions, of which the cheapest is 

sought, as depicted by Table 5-1. 

Table 5-1   The control sequence to be optimised for the water-heating model 

time slot 1 time slot 2 :: time slot 48 

decision 1 

Source? 

decision 2 

Charge? 

decision 1 

Source? 

decision 2 

Charge? 

:: decision 1 

Source? 

decision 2 

Charge? 

tap 1 ? 

or 

tap  2 ? 

yes ? 

or 

no ? 

tap 1 ? 

or 

tap  2 ? 

yes? 

or 

no ? 

:: tap 1 ? 

or 

tap  2 ? 

yes ? 

or 

no ? 
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5.3 Simulated Water Heating Model 

A simplified computer model of Fig 5-1 was created to determine the fitness of each 

candidate solution, which is the total cost over the 24 hour period (see appendix E for an 

example of the code used). The process was continuous in that the final tank tempera-

ture (time slot 48) was used as the starting temperature for the following day. The 

absolute accuracy of the model compared with a real hot water tank is not vital since the 

comparative costs of the existing schedules are being simulated from the same model. 

Several assumptions and rules were made to simplify the model, 

1) No heat loss from the tank. 

2) Complete mixing of water in the tank so it is always at a uniform temperature. 

3) All demand is given instantaneously at the start of each half-hour, charging 

commencing on the recalculated tank temperature. 

4) Charging stops when the tank water reaches the set point (demanded) tempera-

ture (70° C). 

5) All water being delivered is topped up to the set point temperature by the direct 

acting electrical element (element 2) costing whatever the price is in that specific 

half-hour. 

6) In the simulations for the existing charging profiles (E7 and E10) all the water 

was delivered from the tank via tap 1 and extra heat was added from heating 

element 2 if it was below the required temperature. 

The E7 charging profile used is 00:00-07:00. The E10 profile is 02:30-07:00, 12:30-

15:00 and 19:00-21:30. Element 1 was set at 2kW. Although heating element 2 is gener-

ally not present in domestic tanks it is required so that a fair comparison can be made 

between the charging schedules, as it ensures all schedules deliver water at the required 

temperature so that comfort is guaranteed. 



106 

5.4 Data Used 

The data (purchased commercially) used in these simulations originated from 100 

houses monitored over the course of a year. Each water outlet was logged every half-an-

hour and from this all hot water outlets were grouped to find the total hot water demand 

in each half-hour period. There was no indication in the data of how the water was 

actually heated. Eleven houses were randomly chosen for simulations, which were 

performed for November 1994, with the corresponding actual pool selling price (PSP) 

used to calculate the cost.  

Fig 5-2 shows actual hot water consumption and PSP over four days for a particular 

house. It can be seen that there are small price peaks just after midnight caused by the 

surges due to the existing E7 and E10 tariffs. This is even more pronounced on Saturday 

when the early morning price is almost as high as the maximum price for that day. The 

difference between weekdays and weekends can also be seen, with the weekend price 

generally lower because of reduced overall demand. The high peak on Thursday occurs 

at evening meal time and is a result of increased domestic heating, lighting and cooking 

electricity consumption. The water consumption tends to be concentrated between 8am 

and 10am that can be a period of high price. The consumption pattern on Sunday is 

spread throughout the day, highlighting how usage is related to lifestyle. 
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Fig 5-2 Actual pool price and hot water consumption from a random house for four days in 

November 1994 
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Fig 5-3 shows the average daily consumption profile for the same house throughout 

November and the corresponding average price. The morning water consumption is 

emphasised (hours 6-10), as are the early evening and midnight peaks in pool price. 

These two figures show that although on the average things look predictable, on a day-

to-day level there is much variation and potential for customised control strategies. 

 

5.5 Optimisation Procedure 

The optimisation technique used was based on random mutation hill climbing, as de-

scribed in section 4.5.3.3 on page 86. As well as proving superior in performance to 

GAs it is also more desirable from a controller memory standpoint as only two solutions 

have to be stored, as opposed to many if GAs were used. 

In the original version of RMHC only one bit change is allowed between successive 

potential solutions, which means that it is unlikely to escape from any local minima. 

Three bit changes were introduced to overcome this potential problem. Introducing more 

than one bit change also has the effect of speeding up the process. This is because if 

there is no demand in any particular half-hour then the choice of tap 1 or tap 2 is irrele-
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Fig 5-3 The November daily averaged price and consumption for the same house 
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vant and a bit flip will make no change to the solution. Pre-processing the string to 

eliminate redundant bits would reduce the search space but require more processing 

power. 

In any stochastic (i.e. having an element of chance) search procedure, there is no guaran-

tee that the global optimum solution will be found. Once a solution had been given 

adequate time to reach a steady value, it was found more beneficial to restart the search 

as opposed to continue searching from the current position. In the optimisation the 

search was repeated three times with the best overall solution used. Each search con-

sisted of 2,000 evaluations, with the whole process taking about 7 seconds on a P133 to 

optimise all 30 days. 

The hot water tank is an example of a system where one change can have a profound 

effect on the outcome. If the tank is at its maximum temperature then the thermostat in 

the model will ensure that no more heating is allowed, regardless of the control signal to 

the element. For instance, if there is no demand all control signals for heating the tank 

would be ignored once it was at its maximum temperature. A change early in the day 

could result in a previously ignored signal becoming active. This makes the search more 

random rather than gradient based. To overcome this, all signals indicating that the tank 

should be charged were reversed if the tank was already at its maximum temperature. 

The initial starting point can affect the search procedure, especially if there is low de-

mand throughout the day. To capture this possibility the initial guess is ‘do not charge 

the tank at all’, for which the associated cost will be that of using direct acting heating to 

satisfy the requirement. This is often the cheapest solution if there is low demand as it 

saves heating the tank and having excess hot water at the end of the day. 

 

5.6 Profiling Usage Patterns 

In the optimisation process the actual half-hourly consumption data was used. In reality, 

the controller will have to use estimated values on which to base the optimisation. This 
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could be done via a keypad, with the occupants entering times at which they are likely to 

take showers, baths or use washing machines. An alternative method is to use past 

consumption patterns to make educated guesses as to a likely profile for the following 

day. 

If consumption is to be predicted based on previous occurrences, it has to be assumed 

that there is some cyclical pattern involved. This is likely to be a predominant daily 

cycle with an underlying weekly cycle, which life generally revolves around. 

A simple method of predicting consumption is to take an average value of volumes that 

occurred in the same half-hour of previous weeks. The method actually employed was to 

use a neural network to create a curve fit with daily and weekly components. This was 

achieved by having inputs representing hour-of-the-day and day-of-the-week, appropri-

ately coded as sines and cosines in order to achieve the cyclic pattern. Each unique 

combination of inputs thus had four output values for the four weeks of data available, 

an ill-posed problem. This has the effect of basically averaging the consumption but 

fitting a generally smooth curve through the data, achieved by limiting the number of 

hidden neurons. 15 hidden neurons were used in this case. 

The resultant profiles were used to optimise the heating system and the costs calculated 

by then using the actual consumption patterns. Because only four weeks of data were 

used the actual consumption figures for any half-hour contribute to the predicted profile. 

A more realistic test would be to use a running profile and use it for the week ahead, 

with the prediction day’s data not being involved in creating the profile. 

 

5.7 Results 

Consumption data from 11 houses for November 1994 was simulated for boiler sizes of 

10 to 1000 litres. Costs for E7, E10 and direct acting only heating strategies were also 

recorded. The results are shown Fig 5-4 to Fig 5-14. The actual demands in b) are trun-

cated at 20 litres and the x-axis in a) starts at 10 litres. 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-4   HOUSE 1 mean daily demand = 157 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-5   HOUSE 2 mean daily demand = 36 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-6   HOUSE 3 mean daily demand = 74 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-7   HOUSE 4 mean daily demand = 186 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-8   HOUSE 5 mean daily demand = 150 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-9   HOUSE 6 mean daily demand = 71 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-10   HOUSE 7 mean daily demand = 55 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-11   HOUSE 8 mean daily demand = 96 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-12   HOUSE 9 mean daily demand = 86 litres 
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a)   Costs as a function of tank size 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-13   HOUSE 10 mean daily demand = 57 litres 
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b)   The first weeks pool price (dotted) and actual consumption (bars) and the weekly profile (solid) 

Fig 5-14   HOUSE 11 mean daily demand = 395 litres 
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5.8 Discussion of Results 

5.8.1 Does Water Storage Save Money ? 

If storage tanks did not exist then the water must be heated on demand at the cost of the 

current pool price. The cost of this option is shown in Fig 5-4 a) to Fig 5-14 a) by the 

straight line labelled ‘direct’. 

In all cases the E7 and the optimised charging schedules are cheaper or as cheap as 

direct acting heating. E10 is generally cheaper but depends on the tank size and demand 

levels. House 2 shows that for a very low demand excessive charging with large tanks is 

wasteful. 

 

5.8.2 How did the Profiling Perform ? 

Two methods of optimisation were performed. The first was to use a predicted 

‘Opt(profile)’ daily demand and the second was to use the actual ‘Opt(actual)’ demand. 

After the optimised schedules were derived the costs were then calculated based on the 

actual demand. 

Fig 5-4 a) to Fig 5-14 a) show that using the profiled demand compares very favourably 

to using the actual demand. Generally as the tanks get larger the actual demand is re-

quired to give a cheaper solution. This is because the more continuous nature of the 

profiled patterns will result in the tanks being over charged at times of low demand. 

This cannot be avoided as there is more storage capacity and hence increased energy 

consumption. 

In the case of house 6 the profiled optimisation costs were cheaper than the actual opti-

misation costs for tank sizes of 200 to 400 litres. This means that the optimisation 

procedure did not perform satisfactorily when using the real data. By looking at the 

demand profile for week 1 (Fig 5-9 b) it can be seen that water is only consumed in 

about 5 half hours of the day, immediately making 44% of the search space redundant. 

By using the profiled consumption there is predicted demand in most half-hours, which 
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assists the search procedure. For instances similar to this the search space could be 

severely reduced by eliminating the redundant bits. 

The individual profiles in Fig 5-4 b) to Fig 5-14 b) show a wide variation from house to 

house and there is no ‘typical’ profile. The profiles are similar to a smoothed time-

averaged demand, and in all cases the total profiled demand was within 5% of the actual 

total demand. 

It might be suggested that ‘group’ profiles could be created for specific users, which 

would alleviate the need to measure actual consumption. The groups might be related to 

the number of residents, but as Fig 5-15 shows there is no obvious relationship between 

the number of residents and average daily consumption. 
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Fig 5-15   Mean daily hot water consumption related to the number of residents 
5.8.3 How Much Money could be Saved? 

Fig 5-16 shows the percentage cost savings over E7 for the 11 houses. The data is from 

the optimisation results using the profiled consumption patterns, which is close to what 
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could be achieved in reality. For most houses savings of between 20-40% are possible 

for tank sizes between 50 and 250 litres. If it is assumed hot water accounts for 40% 

[81,90] of the domestic electricity bill then this relates to savings in the range 8-16%. 

Existing domestic tank capacities are within the range 100-250 litres. 
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Fig 5-16   For tank capacities between 50-250 litres the optimised schedules show consistent savings 
between 20-40% compared with E7. 

 

5.8.4 Why is the Optimised Schedule Sometimes Worse? 

For tank capacities over 300 litres the relative performance of the optimised schedules 

degrade compared with E7. For house 2, which has very low consumption, this decline 

starts at 150 litres (Fig 5-16). E7 is outperforming the optimised schedule, so why did 

the optimiser not arrive at a schedule similar to E7? 
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The reason for this is the balance between tank size, consumption and the optimisation 

process. In the system used the optimisation window was 24 hours and the schedule was 

calculated once per day. With larger tanks better performance will be achieved by in-

creasing the optimisation window. A tank of 600 litres can typically hold enough hot 

water for three days consumption. An optimal 24 hour schedule will probably not in-

volve charging the tank as it can be wasteful because of excess heating that is not 

required within that 24 hour period. Similarly for low demand a shorter window or 

continuous optimisation would result in improved performance. 

Fig 5-17 shows the relationship between the mean daily water consumption and the tank 

size resulting in the cheapest cost for the E7 and optimised schedules. The optimised 

schedules are a significant improvement and suggest a range within currently available 

tank sizes. 

It is interesting to note that the optimum E7 tank size has 5 times the capacity of the 

average daily requirement. By keeping a large volume of hot water the daily temperature 

reduction is small, so less input will be required by element 2. Introducing time depend-

ent heat losses into the model would give a more realistic situation. In reality the system 

behaviour is not like that of the model, as water is not always delivered at the required 
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Fig 5-17   Optimum tank sizes 



125 

temperature. 

 

5.8.5 How is the Optimisation Working 

Fig 5-18 compares an optimised solution with the E7 situation, showing how the tank 

temperatures and cumulative daily costs vary for a case with a 200-litre tank. 

It can be seen that for the E7 schedule the tank is charged to full capacity starting at 

midnight. The tank does not require a full 7 hours charge, typically only 2 or 3 hours are 

required before it reaches the set point temperature. Examination reveals that the differ-

ence in cost occurs in the way the tank is charged over this night time period. The 

optimised solution delays charging in order to miss the peak prices that occur after 

midnight. Ironically these prices are a result of the night time tariffs being introduced, as 

there is a surge in demand at midnight when appliances are switched on. This is seen 

consistently for all three days. Days 1 and 2 show that the relatively low demand enables 

a reduced temperature in the water tank. Rather than heat a full tank of water it is more 

economical to part heat it and then just top up the demand to the required temperature 

with direct heating. On day 3 the optimised schedule is roughly half the cost of the E7 

schedule but has warmer water in the tank at the end of the day even though it started 
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Fig 5-18   Comparison of an E7 and optimised solution over 3 days 
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colder. 
 
 

5.8.6 Local Minima 

An example of how a search can become trapped in a sub-optimal solution is demon-

strated by Fig 5-19. Two charging schedules are shown (schedule 1 and 2) with their 

resultant cost and tank temperature profiles. The only difference in the two solutions is 

the hours at which the tank is charged, schedule 1 being charged in time slots 8,9,10 and 

11 while schedule 2 is charged in slots 1,7,8 and 9. The tap source was identical for both 

solutions. When this particular day was optimised in isolation these two solutions were 

constantly found, but schedule 2 would never be reduced to schedule 1. In order to 

achieve schedule 1 the search would have to be restarted. 

What can be seen is that for any improvement more than one bit flip in the charging 

schedule is required. Four charging periods appear to be required but one bit flip will 

result in 3 or 5 charging periods. In order to keep four periods but redistribute the times, 

two bit flips are required, one to destroy and one to create. To jump directly from sched-

ule 2 to 1 requires 4 bit flips to simultaneously flip periods 1,7,10 and 11, which is why 

it never occurred as only 3 flips were allowed. With four bit flips allowed the chance of 

jumping from schedule 2 to 1 is less than 1 in over 80 million, assuming the string is not 

reduced in length from 96 bits. 

No intermediate solution is possible because of the demand in time slot 4. This illus-

trates the benefit in frequently restarting the stochastic search as opposed to continuing 

the search from a local minimum and also having the possibility of more than one bit 

flip between solutions. 

What is interesting in these optimised schedules is that although both have a full tank of 

hot water available for the demand in time slot 15, cold water from tap 2 is selected and 

the hot water saved for the higher level of demand in slot 16. Once the tank is almost 

emptied (due to the demand at time slot 16) it is not recharged because there are no 

further cheap periods of which to take advantage. 
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5.9 Chapter Summary 

The simulations have demonstrated the potential for large improvement in water heating 
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Fig 5-19   Global and local minimum solutions. The x-axes are relative linear values for visual comparison 
only. 
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strategies based on real consumption data and prices. Saving of the order of 40% were 

not untypical, which would reduce the cost of electricity supply to domestic customers 

by 16%, based on water heating being 40% of the total consumption [81,90]. There are 

no technological barriers to implementing such a control scheme. 
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66    
Storage Radiator Controller Simulation 

 

 

 

6.1 What are Storage Radiators ? 

A storage radiator (also commonly known as a storage heater) is essentially a brick that 

is electrically heated during the night and dissipates the stored heat gradually throughout 

the day. The idea is that the thermal storage capacity of the bricks is utilised to shift 

electrical heating load in order to help increase the load factor. 

Fig 6-1 shows a cross section through a typical radiator. An electrical heating element is 

encased within the bricks and is used to heat up this ‘core’. Surrounding the core is 

thermal insulation that helps retain the heat. The core contains channels through which 

air circulates by natural convection, heating up the room. 
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There are two manually operated controllers on the basic radiator. The first controls the 

energy input and adjusts the thermostat regulating the core maximum temperature. The 

second controls the heat output and adjusts the damper position, regulating the amount 

of air that is allowed to circulate through the core. The radiators (and water heaters) are 

hard-wired to a separate electrical circuit, which is activated from the electricity meter 

by a time clock or  radio tele-switch. 

In order to improve their controllability, fan storage radiators were developed. These 

have a high level of insulation to minimise heat loss, and an electric fan that can be 

activated to force air through the core when heat is required. The air gap in the core is 

designed so that this forced convection is required to extract the heat. This is done by 

having an inverted ‘u’ shaped air passage. 

storage
bricks

heating
elements

insulation

damper

air inlet

air outlet

 
Fig 6-1   A cross section through a basic storage radiator 
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6.2 Room Thermal Model 

In order to simulate the heating controller, a thermal model of a room is required which 

the neural network has to attempt to emulate. The neural model is then used to evaluate 

heating strategies, of which an optimum is sought. The thermal model is derived from 

first principles and attempts to emulate the response of a real system. 

An explicit finite difference method was used to create the thermal model. This is a 

nodal approach that calculates temperatures at nodes within building elements (walls, 

core etc.) at discrete time intervals, which was every 5 seconds in this particular simula-

tion. Heat transfer within the elements is by conduction, with convection taking place at 

the element surfaces. Each wall can be given different thermal properties and exterior air 

temperatures. Wind speed and outside air temperature were the only weather variables 

required, as solar gains were ignored. Every 5 seconds the net energy input into the 

room is calculated and the room air temperature updated. Appendix F gives more details 

of how the storage radiator was simulated and code for a room with a storage fan heater. 

The simulated room had a 2kW storage radiator and a 1kW direct acting heater. The 

direct acting heater was only allowed to operate at times when there was a required 

internal temperature. The storage heater had a thermostat that stopped charging if the 

core temperature was above 700 °C. The room dimensions were 4 × 5 × 2.5 metres high, 

with 50% of the wall area exterior, 10% of this glazed. There were 0.1 air changes per 

hour with the outside air. Data on the room conditions was recorded at the end of every 

half-hour. 

The exact details of the room configuration are not important and do not have to reflect 

any ‘typical’ type of room that the heater will be placed in. What is being investigated is 

if the neural network can learn the behaviour of the given room , whatever its properties. 
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6.3 Neural Network Emulator 

The purpose of the neural network is to generate an empirical model that will emulate 

the behaviour of the theoretical model. The objective is to be able to predict what the 

room temperature will be in half-an-hour, given the current conditions and the heat 

inputs in that half-hour. The heat inputs can then be optimised so that the required tem-

perature is satisfied in the cheapest manner. 

The neural model was created by reducing the heat transfer process into three distinct 

parts. Fig 6-2 is a schematic of the process and Fig 6-3 the neural emulator created. 

Network 1 predicts the next inner core temperature (TCin+1) given the current core 

condition (TCin, TCout) and the storage charge occurring in that time slot 

(SHcharge+1).  

Network 2 predicts the next outer core temperature given current core conditions, the 

room temperature and the previously predicted next inner core temperature. 

Network 3 predicts the next room temperature given the current and predicted core 

states, the direct acting input (DAcharge+1) and historical weather temperatures for the 

previous 12 hours. 

Networks 1 and 2 had two hidden neurons and network 3 had three. Hyperbolic tangent 

(tanh) and linear neurons were used in the hidden and output layers respectively, and all 

data scaled to lie in the range [–1,1]. Any network output outside this range was rounded 

to –1 or 1, effectively using an activation function known as softmax. 

The time step of the neural model is half-an-hour. Starting at midnight, two charge 

values for the storage and the direct acting heaters are fed into the emulator and the 

thermal changes predicted. The time step is advanced and the predicted state is fed-back 

to become the current state. This process is repeated for all 48 time steps so the emulator 

can predict the room temperature response to the given 24 hour charging schedule, but 

based on a single model predicting half-an-hour ahead. 
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Fig 6-2   Schematic of the heat transfer boundaries in the model 
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Fig 6-3   The neural emulation of the theoretical model for predicting the room temperature in half-an-
hour, given the storage and direct acting energy inputs 

 
TCout = core outer surface temperature  TCin = core inner surface temperature 
Troom = room temperature   Toutside = outside temperature 
SHcharge = energy to storage heater  DAcharge =energy to room by direct acting heater 
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In the neural emulator, outside weather temperatures are required for the 12 hours previ-

ous to the current time slot under consideration. In the simulations retrospective actual 

temperatures are used, although in reality these would have to also be predicted. 

 

6.4 Optimisation Procedure 

The neural emulator was used to evaluate proposed daily schedules of half-hourly 

charges for the storage and direct acting heaters. A schedule consists of a string of 48 or 

96 numbers, depending on the optimisation used. The evaluation was equated in terms 

of cost, calculated by using the pool price. 

Occupancy profiles were created giving the hours at which set point temperatures are 

required. Both the occupancy times and set point temperature values were varied so as 

to create a diverse range of conditions for the neural network to learn. If no set point was 

given (room unoccupied) then the temperature could behave in any manner, but a condi-

tion was given that the direct acting heater could not be on in these periods. 

To compare the neural controller performance with existing heating strategies on a like-

for-like basis, it was a requirement that the schedules must attempt to satisfy the room 

temperature set points given by the daily profile. This was the reason for including the 

direct acting heater, which operates only when there is occupancy in order to make up 

any shortfall in temperature.  

In each half-hour there is a storage heater electrical charge and a direct acting electrical 

charge. In the theoretical model these are either 2 kW (storage) or 1 kW (direct). Be-

cause the thermostats can operate every 5 seconds, the recorded value at the end of each 

half-hour was equivalent to a continuous charging at a fixed percentage of full power. 

The load inputs to the neural emulator are thus real numbers, equivalent to the percent-

age of full power that should be utilised. 

In order to implement this in the optimisation procedure, the string representation has to 

be changed. The control actions, previously represented by a bit at a particular location 
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on a string, are no longer binary choices. Each action can now be any real number be-

tween 0 and 100, so the string could be real valued with a mutation being the random 

generation of a new real number as opposed to a bit flip. From the experience gained in 

chapter 5, a random number of mutations (between 3 and 10) were allowed between 

each evaluation. 

The primary optimisation task is to track the given temperature profile. The ability to 

give the heaters variable charge levels (although constant in each half-hour period) 

means that there is an infinite number of solutions to this problem. Because heat can be 

stored and the price varies every half-hour, each solution will have a different associated 

cost, the one giving the lowest being sought. This is a difficult optimisation problem and 

attempting to find the global solution would be a futile task. What is required is a 

method that can give a reasonable solution. 

To reduce the search space the storage heater loads were limited to 5 discrete values 

equivalent to 0, 0.5, 1, 1.5 and 2 kW. This is more realistic to how a real controller 

would operate by activating a set of four 0.5kW elements. It also has the advantage over 

using continuous real numbers in that a random real mutation is unlikely to set the 

charge to zero, or ‘off’, whereas there is a 1 in 5 chance with the discrete coding. 

As there is no control of the storage radiator output, the optimisation is simpler than that 

of the hot water system in chapter 5 as no decision has to be made as to the source of the 

heat. If a storage fan heater were simulated then the decision to switch the fan on would 

be equivalent to taking hot water from the tank. 

Because the set point temperature has to be satisfied then only the storage heater charge 

needs to be optimised. If the storage schedule does not meet the required set point in any 

particular time slot, the direct acting heater is activated by incrementing the emulator 

load from 0 to 1kW until it is predicted that the set point will be achieved. A storage 

schedule will thus automatically have an associated direct acting cost, giving the total 

cost for that solution. 
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By optimising for minimum cost, a likely solution is never to charge the core. To pre-

vent this scenario, a high penalty cost was added to the total cost if there was under 

heating at times when set points were required. Because of this it was necessary for the 

initial starting schedule to include a high degree of charging. If the initial solution was 

not to charge then there would be a high penalty cost due to the under heating. If random 

mutations did not instantly eliminate under heating in at least one time slot, then the 

same penalty cost would still be incurred as well as an added cost due to the charging, 

thus increasing the overall cost. The search procedure would thus never advance. 

 

6.5 Simulation Procedure 

Two simulations were performed in the optimisation. One was for a situation where the 

thermostat switches on the radiator core and direct acting heater were operational when 

the optimised storage schedule was passed through the building model (NNopt). The 

model then automatically activates the direct acting heater when required, giving a 

similar control scheme to existing strategies. 

The second simulation (NN) was performed where both direct acting and storage 

charges were simultaneously optimised (using a real valued string of length 96) to 

maximise the comfort satisfaction. The cost function being minimised was thus the total 

absolute error, where the error is the difference between the required set point and the 

model prediction. The optimised solution was fine tuned by adjusting the direct acting 

charge so that the set points were satisfied, and the schedule then passed through the 

building model with no thermostat switches. This was performed to provide a yardstick 

from which the effectiveness of the cost optimisation could be assessed and to test the 

accuracy of the emulator predictions. 

E7, E10 and direct acting only performances were also evaluated. In these cases the 

control rule was given that the direct acting heater would switch on if at any time during 

the occupancy periods the room temperature was below the set point, and switch off 

again once the set point was exceeded. During non-occupancy periods the direct acting 
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heater was switched off. For the simulation with only a direct acting heater, the element 

size was increased to 2 kW to prevent under heating. 

The controller was simulated for 72 days starting from 1st January using weather data 

from Kew. The neural networks need some initial data on which to train, so 3 days on an 

E7 charging profile were simulated and used to create this initial database. 

Fig 6-4 is a representation of how the simulation proceeded. From the database of actual 

past behaviour, training patterns were created and the three networks trained. The net-

works were then were used as an emulator to evaluate candidate charging schedules, 

which had been suggested by the optimisation process. Once a solution had been ob-

tained, the charge levels were then applied to the theoretical model and this ‘actual’ 

behaviour recorded and added to the database. The process was then repeated for the 

next day. 

In re-training the networks, the previous weights were used and given 25 epochs training 

on the patterns in the updated database. The optimisation was allowed to proceed for 

800 function evaluations, which took considerably longer than the network training, 

train
neural
networks

optimise
schedule
using
neural
emulator

pass
schedule
through
theoretical
model

update
database

24hr weather
profile

24 hr room profile

predicted behaviour

actual behaviour
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Fig 6-4   A schematic of how the simulations were performed 
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although still only in the order of 10’s of seconds. 

 

6.6 Results 

6.6.1 Did the Controller Work ? 

Without analysing the results too deeply, did the controller generally achieve a satisfac-

tory performance in terms of temperature control – or basically, ‘did it work? The 

results of simulation NN, where there is no thermostatic control, is shown in Fig 6-5. 

The differences between the predicted and achieved temperatures are shown chronologi-

cally over the 72 days. 

It can be seen that eventually, after some initially large errors, the achieved temperatures 

consistently fall well within 1 °C of the predictions. For building thermal control this is 

within acceptable limits and it can thus be stated that in simulation the model predictive 

controller does work. 

6.6.2 Why do the Large Initial Errors Occur ? 

From Fig 6-5 it is observed that early in the simulation there are days when the errors 

are relatively large, indicated by A, B and C. A close examination of the data, shown in 
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Fig 6-5   Half-hourly errors over the 72 day simulation. The error is the difference 

between the emulated and achieved temperatures. 
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Fig 6-6, reveals why these errors occur. 

Large errors occur on day A, the first day that the controller is used. The three previous 

day’s data were used for training, which originated from an E7 charging schedule. Dur-

ing these three days, the core temperature never falls below a certain value and the data 

would be scaled between these current limits of experience. The emulator core tempera-

ture will never fall below its previous minimum whatever the charge, due to the fact that 

all predictions fed back have to lie within the scaled range [-1,1]. There can thus be a 

solution with no storage charge but a heat input equivalent to the core being at the pre-

vious minimum. This is what has happened on day A, with the actual response of the 

core temperature to no charging falling below what the network predicted. As a result 

the room is under heated. 

The same effect is repeated for day C. There is no occupancy during this day so there 

will be no storage charge. The core is already at the minimum temperature previously 

experienced at the start of this day, which the emulator guarantees will not to be sur-

passed. Also at the start of this day the room temperature is close to its lowest ever value 

and the emulator again has restricted the predicted temperatures to lie within current 

experience. This is why the predicted temperature for day C is almost constant at its 

previous minimum. Once the new data has been added to the database the limits change, 

as can be seen for the following day. 

For day B the direct acting charge is at a higher level than had previously occurred. Any 

charge level above that previously experienced will not have the corresponding increase 

in effect. This is due to the saturation of the tanh activation function that limits extrapo-

lation. When the optimised charge is then applied, overheating occurs. This shows an 

inefficiency of the optimisation process, as the direct acting input could have been re-

duced giving the same comfort for less cost. The fine tuning did not correct this as it 

only adjusted the direct acting heat input upwards. 
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The initially large errors occur due to the constraints placed on the emulator to prevent it 

from extrapolating (by using the softmax output function). If these constraints had not 

been set (by having a linear output function) then similar results would have been ex-

pected if the model had used the full range of the tanh activation function. This would 

ensure that any fed-back input outside current experience would be in the saturated 

regions and thus automatically set at either –1 or 1. 
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Fig 6-6   Investigating why the early errors occur 
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The neural network learns the room characteristics within its current limits of experi-

ence almost immediately. Errors occur when these limits are exceeded but once the full 

range of data has been experienced the performance is satisfactory. 

 

6.6.3 Performance of the 1-step-ahead Predictor as a Recursive 
48-step-ahead Predictor 

The neural emulator was created in such a way so that there were predictions used 

within the current time step to estimate the room temperature – or a prediction based on 

predictions. These predictions were then fed-back to be used as inputs for a further 47 

time steps through the day. This deliberately created ‘worst case scenario’ has the poten-

tial for multiple error accumulation and therefore should rigorously test the accuracy of 

the emulator models. 

Fig 6-7 shows how the prediction errors accumulate throughout the day. The initial one 

step ahead error for hour 0.5, where the exact previous conditions are known, is around 

0.07 °C. This immediately doubles for the next time step but gradually levels off at 0.4 

°C around time step 20 (hour 10). The sharp jump at hour 7 is due to the occupancy 
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Fig 6-7   The absolute error of the emulator for each time step averaged over the 72 

days 
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patterns consistently requiring a set point temperature for the start of the day. This will 

result in direct acting heaters being switched on, giving a large change in room tempera-

ture and the potential for larger errors. 

Averaged over time it can be seen that there is a gradual deterioration in performance up 

to hour 10 and then a relatively constant error for the remainder of the day. It could 

easily be assumed from these results that the errors of each individual day will follow a 

similar pattern, with errors gradually accumulating as the fed back predictions become 

gradually worse. 

A closer inspection of the actual daily errors shown in Fig 6-6 and in more detail for a 

different period in Fig 6-8 reveals this is not the case. For day 50 (Fig 6-8) when there is 

no occupancy and thus no heating, there is a general drift in the error up to a point, but 

even here it starts to improve in the later stages of the day. 

 

6.6.4 Comparison with other Heating Strategies 

To assess the relative performance of the model predictive controller the simulations 

were repeated for E7, E10 and a direct acting (DA) only charging schedule. The results 

are shown in Table 6-1. 

The comfort optimised (NN) neuro-controller is almost twice as expensive as all the 

other heating strategies, although its actual energy consumption is comparable to E7 and 

E10. This is unsurprising, as its only objective is to satisfy the demand without any cost 

considerations. This demonstrates how electric heating can be very expensive if not 

efficiently regulated. 
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The cost optimised solution (NNopt) is 5.5% cheaper than E7 and uses 27% less elec-

tricity. This imbalance in the cost savings is in part due to the fact that there were some 

high pool prices. The peak pool price was 70p/kWh whereas the mean price of the 

cheapest 90% of half-hours was only 1.5p/kWh. For NNopt, 34% of the direct acting 

cost was accumulated in only 4% of the time that the direct acting heater was opera-

tional. 

The improvement brought by the controller is in its ability to accurately regulate the 

temperature. In E7 there is excessive overheating of effectively 2.29 °C for a continuous 

period of 10 days, with E10 being worse. The neuro-controller has weather information 

for the day ahead so it can set the loads at a level so that overheating will not occur. 

Overheating does occur for 21 slots out of a possible 1,383, due to set points of 16 °C 

being given, the cooling rate being too low for the temperature to fall enough in the time 

specified. 

 

COST (£) 

Storage 

Direct 

TOTAL 

CONSUMPT

Storage 

Direct 

TOTAL 

COMFORT 

Overheat (>0

Occurrences 

Average (°C)

Underheat (>

Occurrences 

Average (°C)
 

Table 6-1   The relative performances of 5 heating strategies 

NN NNopt E7 E10 DA only 

     

30.99 6.70 12.17 17.16 ---- 

4.55 9.37 4.83 3.01 21.86 

35.54 16.07 17.00 20.17 21.86 

ION (kWh)      

986 429 959 1097 --- 

104 341 104 62 622 

1090 770 1063 1159 622 

     

.5 °C)      

404 21 476 696 --- 

 1.44 2.44 2.29 2.62 --- 

0.5 °C)      

47 --- --- --- --- 

 -0.73 --- --- --- --- 
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The most energy efficient solution is direct acting only, as energy is not wasted heating 

periods that do not require a set point. The neuro-optimised solution (NNopt) is 23% 

less efficient than direct acting but 26% cheaper. 

 

6.7 Emulator Improvements 

The neural emulator created was a 1-step-ahead predictor that used its own predictions 

to extrapolate to 48 time steps ahead. At each time step the only information it receives 

that is not predicted directly from the starting conditions is the outside temperature, for 

which actual values are used. By feeding back the predictions to advance a time step 

there is thus no new information being introduced apart from potential errors. 

A better approach would be to have 48 networks, each trained to predict the temperature 

for a given time step ahead. The inputs would be the initial starting conditions and the 

weather and loads that had occurred up to that time step. Intermediate temperatures are 

thus not introduced as they do not need to be known for the current prediction. 

By taking the average temperature from a population of models for each time step (see 

section 3.10 on page 61), the accuracy would be further improved. 

The potential effect on the error of ‘wrong’ temperature predictions needs to be quanti-

fied. It is hypothesised that this will only be important when there are sudden 

unpredicted cold fronts and the model underestimates the heating requirement. 

 

6.8 Chapter Summary 

The simulations performed in this chapter have demonstrated that theoretically neural 

networks could work as model predictive controllers of domestic storage heating. The 

main benefit over existing systems is anticipating when overheating will occur and 

reducing the charge appropriately. 
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